Micro-milling technology is widely applied in micro manufacturing,particularly for the fabrication of miniature and micro components.However,the chatters and machining dynamics related issues in micro-milling are ofte...Micro-milling technology is widely applied in micro manufacturing,particularly for the fabrication of miniature and micro components.However,the chatters and machining dynamics related issues in micro-milling are often the main challenges restricting its machining quality and productivity.Many research works have rendered that the machining dynamics and chatters in micro-milling are more complex compared with the conventional macro-milling process,likely because of the size effect and rigidity of the micro-milling system including the tooling,workpiece,process variables,materials involved,and the high-speed milling machines,and further their collective dynamic effects.Therefore,in this paper,the state of the art focusing on micro-milling chatters and dynamics related issues over the past years are comprehensively and critically reviewed to provide some insights for potential researchers and practitioners.Firstly,typical applications and the problems caused by the machining dynamics and chatters in micro-milling have been put forward in this paper.Then,the research on the underlying micro-cutting mechanics and dynamics,stability analysis,chatters detection,and chatter suppression are summarized critically.Furthermore,the underlying scientific and technological challenges are discussed particularly against typical precision engineering applications.Finally,the possible future directions and trends in research and development of micro-milling have been discussed.展开更多
Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibra...Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.展开更多
Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators ...Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process.展开更多
Chatter in the machining system can result in a decrease in tool life,poor surface finish,conservative cutting parameters,etc.Despite many review papers promoting the understanding and research of this area,chatter su...Chatter in the machining system can result in a decrease in tool life,poor surface finish,conservative cutting parameters,etc.Despite many review papers promoting the understanding and research of this area,chatter suppression techniques are generally discussed within limited pages in the framework of comprehensive chatter-related problems.In recent years,the developments of smart materials,advanced sensing techniques,and more effective control strategies have led to some new progress in chatter suppression.Meanwhile,the widely used thin-walled parts present more and more severe machining challenges in their milling processes.Considering the above deficiencies,this paper summarizes the current state of the art in milling chatter suppression.New classifications of chatter suppression techniques are proposed according to the working principle and control target.Based on the new classified framework,the mechanism and comparisons of different chatter suppression strategies are reviewed.Besides,the current challenges and potential tendencies of milling chatter suppression techniques are highlighted.Intellectualization,integration,compactness,adaptability to workpiece geometry,and the collaboration of multiple control methods are predicted to be important trends in the future.展开更多
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v...Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.展开更多
In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfaci...In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.展开更多
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by ...Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal ...An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal between the two successive cuts is 270°. The cutting process can be adjusted from the unstable region to stable one whenever regenerative chatter occurs if the phase shift angle is kept 270° by the optimal regulation of spindle speed. The theoretical analysis and the experimental results prove that the optimal regulation of spindle speed can effectively control regenerative cutting chatter. In addition, a reliablelly optimal control system of reliable spindle speed is presented. There is no need for system identification of the machine tool, and it is easy to put this regenerative chatter control method into practice, so the method has excellent application prospect.展开更多
A mathematical model of the computer numerical control (CNC) heavy cuttingservo system including chatter in cutting courses was constructed for the chatter in CNC heavycutting. The theoretical analysis, computer simul...A mathematical model of the computer numerical control (CNC) heavy cuttingservo system including chatter in cutting courses was constructed for the chatter in CNC heavycutting. The theoretical analysis, computer simulation and orthogonal tests on this model show thatincreasing the gain of position K_(pp) can improve the rapid tracking performance of machine tools,and decreasing the delay time of speed loop τ_s can quickly eliminate the static error in thesystem, but the limited cutting width b_(lim) will descend correspondingly; excessively large orexcessively small gain of speed loop K_(ps) can result in decreasing b_(lim); optimizing K_(pp),τ_s and K_(ps) can improve the dynamic and static performance of the system and increase b_(lim).It is easy and feasible to optimize the servo parameters by the orthogonal test. This method caneffectively improve the system's stability and limited cutting width and it is suitable for the CNCheavy cutting of heavy-duty machine tools.展开更多
Chatter is a self-excited vibration of parts in machining systems. It is widely present across a range of cutting processes, and has an impact upon both efficiency and quality in production processing. A great deal of...Chatter is a self-excited vibration of parts in machining systems. It is widely present across a range of cutting processes, and has an impact upon both efficiency and quality in production processing. A great deal of research has been dedicated to the development of technologies that are able to predict and detect chatter. The purpose of these technologies is to facilitate the avoidance of chatter during cutting processes, which leads to better surface precision, higher productivity,and longer tool life. This paper summarizes the current state of the art in research regarding the problems of how to arrive at stable chatter prediction, chatter identification, and chatter control/-suppression, with a focus on milling processes. Particular focus is placed on the theoretical relationship between cutting chatter and process damping, tool runout, and gyroscopic effect, as well as the importance of this for chatter prediction. The paper concludes with some reflections regarding possible directions for future research in this field.展开更多
Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decompo...Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%.展开更多
Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,whic...Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed.展开更多
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is p...This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is desig...Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is designed to investigate the regenerative chatter suppression during the machining. Based on the analysis of typical structural components in the aerospace industry, a general complex thin-walled workpiece with fixture and damping constraint can be equivalent as a rectangular cantilever beam. On the basis of the equivalent models, natural frequency and mode shape function of the thin-walled workpiece is obtained according to the Euler-Bernoulli beam assumptions. Then, the displacement response function of the bending vibration of the beam is represented by the product of all the mode shape function and the generalized coordinate. Furthermore, a dynamic equation of the workpiece-fixture system considering the external damping factor is proposed using the Lagrangian method in terms of all the mode shape function and the generalized coordinate, and the response of system under the dynamic cutting force is calculated to evaluate the stability of the milling process under damping control. Finally, the feasibility and effectiveness of the proposed approach are validated by the impact hammer experiments and several machining tests. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.展开更多
In order to build high accuracy integral dynamic models of cold rolling mill system, by analyzing the vibration process of cold rolling, the dynamic model of 4-h mill, including the rolling process model, the mill rol...In order to build high accuracy integral dynamic models of cold rolling mill system, by analyzing the vibration process of cold rolling, the dynamic model of 4-h mill, including the rolling process model, the mill roll stand structure model and the hydraulic servo system model is built. These three models are coupled and linearized, then the multiple input and multiple output (MIMO) linear transfer function model of single stand 4-h cold mill system is obtained. The model with the proposed data proves its validity, meanwhile the effects of different working conditions on the stability of cold rolling mill system have been discussed. Simulation resulsts show that the model accords with former models and has its own advancement. It contributes to the further study and supression of coupling vibraiton.展开更多
基金supported by the National Natural Science Foundation of China(No.52075129).
文摘Micro-milling technology is widely applied in micro manufacturing,particularly for the fabrication of miniature and micro components.However,the chatters and machining dynamics related issues in micro-milling are often the main challenges restricting its machining quality and productivity.Many research works have rendered that the machining dynamics and chatters in micro-milling are more complex compared with the conventional macro-milling process,likely because of the size effect and rigidity of the micro-milling system including the tooling,workpiece,process variables,materials involved,and the high-speed milling machines,and further their collective dynamic effects.Therefore,in this paper,the state of the art focusing on micro-milling chatters and dynamics related issues over the past years are comprehensively and critically reviewed to provide some insights for potential researchers and practitioners.Firstly,typical applications and the problems caused by the machining dynamics and chatters in micro-milling have been put forward in this paper.Then,the research on the underlying micro-cutting mechanics and dynamics,stability analysis,chatters detection,and chatter suppression are summarized critically.Furthermore,the underlying scientific and technological challenges are discussed particularly against typical precision engineering applications.Finally,the possible future directions and trends in research and development of micro-milling have been discussed.
基金supported by the National Natural Science Foundation of China(No.U20A20294)the National Natural Science Foundation of China(No.52322511)the National Natural Science Foundation of China(No.52188102).
文摘Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.
基金supported by the Civil Aircraft Project(No.MJZ4-1N22),National Natural Science Foundation of China(No.51975053)Inversion and Application Project of Outcome(Nos.D44F9A65 and 2B0188E1)+1 种基金Key R&D Program of Inner Mongolia(No.2022YFHH0121)the Basic Research Fund of Beijing Institute of Technology(No.2021CX01023).
文摘Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process.
基金co-supported by the National Natural Science Foundation of China(No.52275445)the Key Research and Development Plan of Shandong Province(Nos.2020CXGC010204,2023CXPT014,and 2021JMRH0301).
文摘Chatter in the machining system can result in a decrease in tool life,poor surface finish,conservative cutting parameters,etc.Despite many review papers promoting the understanding and research of this area,chatter suppression techniques are generally discussed within limited pages in the framework of comprehensive chatter-related problems.In recent years,the developments of smart materials,advanced sensing techniques,and more effective control strategies have led to some new progress in chatter suppression.Meanwhile,the widely used thin-walled parts present more and more severe machining challenges in their milling processes.Considering the above deficiencies,this paper summarizes the current state of the art in milling chatter suppression.New classifications of chatter suppression techniques are proposed according to the working principle and control target.Based on the new classified framework,the mechanism and comparisons of different chatter suppression strategies are reviewed.Besides,the current challenges and potential tendencies of milling chatter suppression techniques are highlighted.Intellectualization,integration,compactness,adaptability to workpiece geometry,and the collaboration of multiple control methods are predicted to be important trends in the future.
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
基金supported by the National Natural Science Foundation of China(No.51775038).
文摘Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.
基金supported by the National Natural Science Foundation of China(Grant No.51775038).
文摘In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金Supported by the National Key Basic Research Program of China("973"Project)(2009CB724401)the China Postdoctoral Science Foundation(20070420208)the Postdoctoral Innovation Foundation of Shandong Province(200702023)~~
文摘Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
文摘An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal between the two successive cuts is 270°. The cutting process can be adjusted from the unstable region to stable one whenever regenerative chatter occurs if the phase shift angle is kept 270° by the optimal regulation of spindle speed. The theoretical analysis and the experimental results prove that the optimal regulation of spindle speed can effectively control regenerative cutting chatter. In addition, a reliablelly optimal control system of reliable spindle speed is presented. There is no need for system identification of the machine tool, and it is easy to put this regenerative chatter control method into practice, so the method has excellent application prospect.
文摘A mathematical model of the computer numerical control (CNC) heavy cuttingservo system including chatter in cutting courses was constructed for the chatter in CNC heavycutting. The theoretical analysis, computer simulation and orthogonal tests on this model show thatincreasing the gain of position K_(pp) can improve the rapid tracking performance of machine tools,and decreasing the delay time of speed loop τ_s can quickly eliminate the static error in thesystem, but the limited cutting width b_(lim) will descend correspondingly; excessively large orexcessively small gain of speed loop K_(ps) can result in decreasing b_(lim); optimizing K_(pp),τ_s and K_(ps) can improve the dynamic and static performance of the system and increase b_(lim).It is easy and feasible to optimize the servo parameters by the orthogonal test. This method caneffectively improve the system's stability and limited cutting width and it is suitable for the CNCheavy cutting of heavy-duty machine tools.
基金supported by Projects of International Cooperation and Exchanges NSFC (51720105009)the National Natural Science Foundation of China (No. 51575147)the Youth Talent Support Program of Harbin University of Science and Technology (201507)
文摘Chatter is a self-excited vibration of parts in machining systems. It is widely present across a range of cutting processes, and has an impact upon both efficiency and quality in production processing. A great deal of research has been dedicated to the development of technologies that are able to predict and detect chatter. The purpose of these technologies is to facilitate the avoidance of chatter during cutting processes, which leads to better surface precision, higher productivity,and longer tool life. This paper summarizes the current state of the art in research regarding the problems of how to arrive at stable chatter prediction, chatter identification, and chatter control/-suppression, with a focus on milling processes. Particular focus is placed on the theoretical relationship between cutting chatter and process damping, tool runout, and gyroscopic effect, as well as the importance of this for chatter prediction. The paper concludes with some reflections regarding possible directions for future research in this field.
基金National Natural Science Foundation of China(Grant No.51475432)Zhejiang Provincial National Natural Science Foundation of China(Grant No.LZ13E050003)State Key Program of National Natural Science of China(Grant Nos.U1234207,U1709210)
文摘Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%.
基金supported by National Natural Science Foundation of China(No.51975096,No.51905075)China Postdoctoral Science Foundation(No.2019M661090)Liao Ning Revitalization Talents Program(No.XLYC1807230)。
文摘Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed.
基金co-supported by the National Basic Research Program of China(No.2012CB720000)the National Natural Science Foundation of China(No.61104153)the Research Fund for the Doctoral Program of Higher Education of China(No.20091101110025)
文摘This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金supported by the National Basic Research Program of China (Grant No. 2013CB035802)the 111 Project of China (Grant No. B13044)
文摘Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is designed to investigate the regenerative chatter suppression during the machining. Based on the analysis of typical structural components in the aerospace industry, a general complex thin-walled workpiece with fixture and damping constraint can be equivalent as a rectangular cantilever beam. On the basis of the equivalent models, natural frequency and mode shape function of the thin-walled workpiece is obtained according to the Euler-Bernoulli beam assumptions. Then, the displacement response function of the bending vibration of the beam is represented by the product of all the mode shape function and the generalized coordinate. Furthermore, a dynamic equation of the workpiece-fixture system considering the external damping factor is proposed using the Lagrangian method in terms of all the mode shape function and the generalized coordinate, and the response of system under the dynamic cutting force is calculated to evaluate the stability of the milling process under damping control. Finally, the feasibility and effectiveness of the proposed approach are validated by the impact hammer experiments and several machining tests. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
基金Item Sponsored by National Natural Science Foundation of China(60374032)Beijing Municipal Education Commission Key Discipline Control Theory and Control Engineering of China(XK100080537)
文摘In order to build high accuracy integral dynamic models of cold rolling mill system, by analyzing the vibration process of cold rolling, the dynamic model of 4-h mill, including the rolling process model, the mill roll stand structure model and the hydraulic servo system model is built. These three models are coupled and linearized, then the multiple input and multiple output (MIMO) linear transfer function model of single stand 4-h cold mill system is obtained. The model with the proposed data proves its validity, meanwhile the effects of different working conditions on the stability of cold rolling mill system have been discussed. Simulation resulsts show that the model accords with former models and has its own advancement. It contributes to the further study and supression of coupling vibraiton.