期刊文献+
共找到47,235篇文章
< 1 2 250 >
每页显示 20 50 100
Battery Swapping Emerges as Major Alternative to Charging Electric Vehicles
1
作者 Chris Palmer 《Engineering》 2025年第9期6-9,共4页
In March 2025,prominent Chinese automaker NIO(Shanghai,China),the global leader in electric vehicle(EV)battery swapping,and Contemporary Amperex Technology Co.,Ltd.(CATL)(Nindge,China),the world’s biggest manufacture... In March 2025,prominent Chinese automaker NIO(Shanghai,China),the global leader in electric vehicle(EV)battery swapping,and Contemporary Amperex Technology Co.,Ltd.(CATL)(Nindge,China),the world’s biggest manufacturer of EV batteries,announced a strategic partnership to build the world’s largest battery swapping network,while also promoting unified standards and technologies[1].Just weeks later,CATL announced another partnership,this one with Chinese state-owned oil giant Sinopec(Beijing,China)to build 10000 new battery swapping stations in China,at least 500 in 2025[2]. 展开更多
关键词 electric vehicles TECHNOLOGIES standards battery swapping CATL promoting unified standards technologies just NIO SINOPEC
在线阅读 下载PDF
Operation Strategy of EV Battery Charging and Swapping Station
2
作者 Zhuo Peng Li Zhang +2 位作者 Ku-An Lu Jun-Peng Hu Si Liu 《Journal of Electronic Science and Technology》 CAS 2014年第1期26-32,共7页
An operation strategy of the electric vehicle (EV) battery charging and swapping station is proposed in the paper. The strategy is established based on comprehensively consideration of the EV charging behaviors and ... An operation strategy of the electric vehicle (EV) battery charging and swapping station is proposed in the paper. The strategy is established based on comprehensively consideration of the EV charging behaviors and the possible mutual actions between battery charging and swapping. Three energy management strategies can be used in the station: charging period shifting, energy exchange between EVs, and energy supporting from surplus swapping batteries. Then an optimization model which minimizes the total energy management costs of the station is built. The Monte Carlo simulation is applied to analyze the characteristics of the EV battery charging load, and a heuristic algorithm is used to solve the strategy providing the relevant information of EVs and the battery charging and swapping station. The operation strategy can efficiently reduce battery charging during the high electricity price periods and make more reasonable use of the resources. Simulations prove the feasibility and rationality of the strategy. 展开更多
关键词 Electric vehicles energy exchange energy management electric vehicle battery chargingand swapping station operation strategy.
在线阅读 下载PDF
Study on Charging Load Modeling and Coordinated Charging of Electric Vehicles Under Battery Swapping Modes
3
《中国电机工程学报》 EI CSCD 北大核心 2012年第31期I0001-I0026,共26页
关键词 电动汽车电池 交换模式 充电 负荷建模 国家电网公司 苏南地区 电网负荷 优化模型
原文传递
Dispatchable Capability of Aggregated Electric Vehicle Charging in Distribution Systems 被引量:1
4
作者 Shiqian Wang Bo Liu +4 位作者 Yuanpeng Hua Qiuyan Li Binhua Tang Jianshu Zhou Yue Xiang 《Energy Engineering》 EI 2025年第1期129-152,共24页
This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging... This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging. 展开更多
关键词 Aggregated charging dispatchable capability peak shaving and valley filling the economics of charging demand response
在线阅读 下载PDF
Tailoring anion-dominant solvation environment by steric-hindrance effect and competitive coordination for fast charging and stable cycling lithium metal batteries 被引量:1
5
作者 Ruizhe Xu Anjun Hu +7 位作者 Zhen Wang Kai Chen Jingze Chen Wang Xu Gang Wu Fei Li Jian Wang Jianping Long 《Journal of Energy Chemistry》 2025年第6期35-43,I0002,共10页
The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate elect... The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes. 展开更多
关键词 Lithium metal batteries Fast charging Stable cycling Solvation structure
在线阅读 下载PDF
Optimization of Charging/Battery-Swap Station Location of Electric Vehicles with an Improved Genetic Algorithm-Based Model 被引量:4
6
作者 Bida Zhang Qiang Yan +1 位作者 Hairui Zhang Lin Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1177-1194,共18页
The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-pla... The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-planning model to minimize construction and operation costs,user costs,and user satisfaction-related penalty costs.We designed an improved genetic algorithm that changes the crossover rate using the fitness value,memorizes,and transfers excellent genes.In addition,the present model addresses the problem of“premature convergence”in conventional genetic algorithms.A simulated example revealed that our proposed model could provide a basis for optimized location planning of charging/battery-swapping facilities at different levels under different charging modes with an improved computing efficiency.The example also proved that meeting more demand for power supply of electric vehicles does not necessarily mean increasing the sites of charging/battery-swap stations.Instead,optimizing the level and location planning of charging/battery-swap stations can maximize the investment profit.The proposed model can provide a reference for the government and enterprises to better plan the location of charging/battery-swap facilities.Hence,it is of both theoretical and practical value. 展开更多
关键词 charging/battery-swapping facility genetic algorithm location planning excellent gene cluster
在线阅读 下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
7
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
在线阅读 下载PDF
A review of strategies to produce a fast-charging graphite anode in lithium-ion batteries
8
作者 LIANG Jin QIN Ze +4 位作者 QUAN Zhong HAO Jing QIN Xian-ying LI Bao-hua KANG Fei-yu 《新型炭材料(中英文)》 北大核心 2025年第4期738-765,共28页
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e... Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs. 展开更多
关键词 Fast charging GRAPHITE Lithium-ion batteries Electrolyte solution SOLVATION
在线阅读 下载PDF
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
9
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
Future Ultrafast Charging Stations for Electric Vehicles in China:Charging Patterns,Grid Impacts and Solutions,and Upgrade Costs
10
作者 Yang Zhao Xinyu Chen +2 位作者 Peng Liu Chris P.Nielsen Michael B.McElroy 《Engineering》 2025年第5期309-322,共14页
In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including i... In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastruc-ture.Here,we introduce an integrated model to assess fast and ultrafast charging impacts for represen-tative charging stations in China,combining real-world charging patterns and detailed station optimization models.We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30%when fast-charging power is doubled,primarily because shorter charg-ing sessions are less likely to overlap.For more typical stations(e.g.,8-9 chargers and 120 kW·charger^(−1)),upgrading chargers to 350-550 kW while allowing managed dynamic waiting strategies(of∼1 minute)can reduce overall charging times to∼9 minutes.At stations,deploying battery storage and/or expanding transformers can help manage future increases in station loads,yet the primary device cost of the former is∼4 times higher than that of the latter.Our results offer insights for charging infrastructure planning,EV-grid interactions,and associated policymaking. 展开更多
关键词 Electric vehicle Ultrafast charging Grid impact charging infrastructure Upgrade cost
在线阅读 下载PDF
Coordinated Charging Scheduling Strategy for Electric Vehicles Considering Vehicle Urgency
11
作者 Zhenhao Wang Hongwei Li +1 位作者 Dan Pang Jinming Ge 《Energy Engineering》 2025年第8期3223-3242,共20页
Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles,this paper proposes a coordinated ... Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles,this paper proposes a coordinated charging scheduling strategy for multiple types of electric vehicles based on the degree of urgency of vehicle use.First,considering the range loss characteristics,dynamic time-sharing tariff mechanism,and user incentive policy in the lowtemperature environment of northern winter,a differentiated charging model is constructed for four types of vehicles:family cars,official cars,buses,and cabs.Then,we innovatively introduce the urgency parameter of charging demand for multiple types of vehicles and dynamically divide the emergency and non-emergency charging modes according to the difference between the regular charging capacity and the user’s minimum power demand.When the conventional charging capacity is less than the minimum power demand of the vehicle within the specified time,it is the emergency vehicle demand,and this type of vehicle is immediately charged in fast charging mode after connecting to the grid.On the contrary,it is a non-emergency demand,and the vehicle is connected to the grid to choose the appropriate time to charge in conventional charging mode.Finally,by optimizing the objective function to minimize the peakto-valley difference between the grid and the vehicle owner’s charging cost,and designing the charging continuity constraints to avoid battery damage,it ensures that the vehicle is efficiently dispatched under the premise of meeting the minimum power demand.Simulation results show that the proposed charging strategy can reduce the charging cost of vehicle owners by 26.33%,reduce the peak-to-valley difference rate of the grid by 29.8%,and significantly alleviate the congestion problem during peak load hours,compared with the disordered charging mode,while ensuring that the electric vehicles are not overcharged and meet the electricity demand of vehicle owners.This paper solves the problems of the existing research on the singularity of vehicle models and the lack of environmental adaptability and provides both economic and practical solutions for the cooperative optimization of electric vehicles and power grids in multiple scenarios. 展开更多
关键词 Electric vehicle orderly charging charging costs time-of-use electricity price vehicle emergency degree
在线阅读 下载PDF
Liquid Metal-Enabled Synergetic Cooling and Charging of Superhigh Current
12
作者 Chuanke Liu Maolin Li +3 位作者 Daiwei Hu Yi Zheng Lingxiao Cao Zhizhu He 《Engineering》 2025年第4期117-129,共13页
High-power direct current fast charging(DC-HPC),particularly for megawatt-level charging currents(≥1000 A),is expected to significantly reduce charging time and improve electric vehicle durability,despite the risk of... High-power direct current fast charging(DC-HPC),particularly for megawatt-level charging currents(≥1000 A),is expected to significantly reduce charging time and improve electric vehicle durability,despite the risk of instantaneous thermal shocks.Conventional cooling methods,which separately transmit current and heat,struggle to achieve both flexible maneuverability and high-efficiency cooling.In this study,we present a synergetic cooling and transmission strategy using a gallium-based liquid metal flexible charging connector(LMFCC),which efficiently dissipates ultra-high heat flux while simultaneously carrying superhigh current.The LMFCC exhibits exceptional flexible operability(bending radius of 2 cm)and transmission stability even under significant deformation owing to the excellent liquidity and conductivity of liquid metal(LM).These properties are markedly better than those of solid metal connector.A compact induction electromagnet-driven method is optimized to significantly increase the LM flow rate and the active cooling capacity,resulting in sudden low temperature(<16℃at 1000 A).This synergetic cooling and charging strategy are expected to enable ultrahigh-heat-flux thermal management and accelerate development of the electric vehicle industry. 展开更多
关键词 Electric vehicle Superhigh current charging Liquid metal Synergetic-cooling strategy Flexible charging cable
在线阅读 下载PDF
Swapping dynamics of composite knots in a stretched polymer under nanochannel confinement
13
作者 Yong Li Zuoshan Liu +3 位作者 Yuyu Feng Rongri Tan Zhouhui Deng Yanhui Liu 《Communications in Theoretical Physics》 2025年第8期172-179,共8页
In this work,Langevin dynamics simulations were carried out to thoroughly investigate the swapping process of composite knots under tension in a cuboid nanochannel.From our analysis,the free energy profiles of knot sw... In this work,Langevin dynamics simulations were carried out to thoroughly investigate the swapping process of composite knots under tension in a cuboid nanochannel.From our analysis,the free energy profiles of knot swapping under different conditions were extracted from the overall probability distribution of the relative distance between the centers of composite knots.In addition,the impact of the stretching force,confinement size,and bending stiffness on the free energy profiles was directly identified.Especially,the influence of topology structure is for the first time reported.The increasing stretching force in a fixed confinement or the confinement size under a constant stretching force does not alter their respective equilibrium populations at the separate state and the entangled state.In contrast,a bending stiffness larger than 15 enhanced the formation of the entangled state.The topology structure of the 51knot,which was different from the 52knot,resulted in forming a metastable state in the free energy profiles.The increasing stretching forces yielded an enhancement of the following free energy barrier. 展开更多
关键词 swapping process composite knots Langevin dynamics simulations free energy profile
原文传递
Operando EPR imaging of lithium dendrites on the graphite in extreme-fast-charging full cells
14
作者 Jianfeng Li 《Magnetic Resonance Letters》 2025年第1期81-82,共2页
Harnessing the potential of graphite is key to fast charging at 4C(fully charged within 15 minutes)for electric vehicles.However,graphite is subject to lithium dendrite growth during charging,leading to short circuits... Harnessing the potential of graphite is key to fast charging at 4C(fully charged within 15 minutes)for electric vehicles.However,graphite is subject to lithium dendrite growth during charging,leading to short circuits and battery failures,which is one of the biggest problems for batteries[1-4].Therefore,quickly identifying the lithium dendrites and different types of dendrites on the graphite surface can quickly help analyze the state of graphite and design good charging protocols. 展开更多
关键词 LITHIUM charging EXTREME
在线阅读 下载PDF
Data-Driven Digital Evidence Analysis for the Forensic Investigation of the Electric Vehicle Charging Infrastructure
15
作者 Dong-Hyuk Shin Jae-Jun Ha Ieck-Chae Euom 《Computer Modeling in Engineering & Sciences》 2025年第6期3795-3838,共44页
The accelerated global adoption of electric vehicles(EVs)is driving significant expansion and increasing complexity within the EV charging infrastructure,consequently presenting novel and pressing cybersecurity challe... The accelerated global adoption of electric vehicles(EVs)is driving significant expansion and increasing complexity within the EV charging infrastructure,consequently presenting novel and pressing cybersecurity challenges.While considerable effort has focused on preventative cybersecurity measures,a critical deficiency persists in structured methodologies for digital forensic analysis following security incidents,a gap exacerbated by system heterogeneity,distributed digital evidence,and inconsistent logging practices which hinder effective incident reconstruction and attribution.This paper addresses this critical need by proposing a novel,data-driven forensic framework tailored to the EV charging infrastructure,focusing on the systematic identification,classification,and correlation of diverse digital evidence across its physical,network,and application layers.Our methodology integrates open-source intelligence(OSINT)with advanced system modeling based on a three-layer cyber-physical system architecture to comprehensively map potential evidentiary sources.Key contributions include a comprehensive taxonomy of cybersecurity threats pertinent to EV charging ecosystems,detailed mappings between these threats and the resultant digital evidence to guide targeted investigations,the formulation of adaptable forensic investigation workflows for various incident scenarios,and a critical analysis of significant gaps in digital evidence availability within current EV charging systems,highlighting limitations in forensic readiness.The practical application and utility of this method are demonstrated through illustrative case studies involving both empirically-derived and virtual incident scenarios.The proposed datadriven approach is designed to significantly enhance digital forensic capabilities,support more effective incident response,strengthen compliance with emerging cybersecurity regulations,and ultimately contribute to bolstering the overall security,resilience,and trustworthiness of this increasingly vital critical infrastructure. 展开更多
关键词 Electric vehicle charging infrastructure digital forensics incident investigation charging network vulnerability analysis threat modeling open-source intelligence(OSINT)
在线阅读 下载PDF
AGV Scheduling and Bidirectional Conflict-Free Routing Problem with Battery Swapping in Automated Container Terminals
16
作者 He Huang Jin Zhu 《Computer Modeling in Engineering & Sciences》 2025年第8期1717-1748,共32页
Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transport... Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value. 展开更多
关键词 Automated container terminal(ACT) AGV scheduling bidirectional conflict-free routing battery swapping different evolution algorithm
在线阅读 下载PDF
Ordered mesoporous carbon-supported iron vanadate anode for fast-charging,high energy density,and stable lithium-ion batteries
17
作者 Yi-Fan Li Jing-Hui Ren +8 位作者 Qiu-Qi Wu Qian Wang Wen-Jun Cao Xu-Da Guo Shu-Guo Lei Yi Zhang Shan Jiang Lei-Chao Meng Ji-Wei Hou 《Rare Metals》 2025年第3期1605-1616,共12页
Developing fast-charging lithium-ion batteries(LIBs)that feature high energy density is critical for the scalable application of electric vehicles.Iron vanadate(FVO)holds great potential as anode material in fast-char... Developing fast-charging lithium-ion batteries(LIBs)that feature high energy density is critical for the scalable application of electric vehicles.Iron vanadate(FVO)holds great potential as anode material in fast-charging LIBs because of its high theoretical specific capacity and the high natural abundance of its constituents.However,the capacity of FVO rapidly decays due to its low electrical conductivity.Herein,uniform FVO nanoparticles are grown in situ on ordered mesoporous carbon(CMK-3)support,forming a highly electrically conductive porous network,FVO/CMK-3.The structure of CMK-3 helps prevent agglomeration of FVO particles.The electrically conductive nature of CMK-3 can further enhance the electrical conductivity of FVO/CMK-3 and buffer the volume expansion of FVO particles during cycling processes.As a result,the FVO/CMK-3 displays excellent fast-charging performance of 364.6 mAh·g^(-1)capacity for 2500 cycles at 10 A·g^(-1)(with an ultralow average capacity loss per cycle of 0.003%)through a pseudocapacitive-dominant process.Moreover,the LiCoO_(2)//FVO/CMK-3 full cell achieves a high capacity of 100.2 mAh·g^(-1)and a high capacity retention(96.2%)after 200 cycles.The superior electrochemical performance demonstrates that FVO/CMK-3 is an ideal anode material candidate for fast-charging,stable LIBs with high energy density. 展开更多
关键词 Fast charging LIBS ANODE Iron vanadate Electrical conductivity
原文传递
Break-Even Analysis on the Charging and Battery-Swapped Station of Electric Vehicles
18
作者 Xiaolei Li Huawei Jia 《Journal of Power and Energy Engineering》 2013年第1期1-5,共5页
The construction of electric vehicle charging station plays an important role in the development of electric vehicles and the promotion of the renewable resource. In the paper, a model to analyze the economic benefit ... The construction of electric vehicle charging station plays an important role in the development of electric vehicles and the promotion of the renewable resource. In the paper, a model to analyze the economic benefit of the charging station is presented, which is based on the break-even theory. Then the threshold price is calculated based on the model according to the construction plans of charging facilities in one district. Finally, the strategy for the development of charging faculties is proposed to improve the health growth of electric automotive industry. 展开更多
关键词 Electric Vehicle charging STATION Break-Even Critical charging PRICE
暂未订购
Techno-Economic Analysis for Hydrogen Storage Integrated Grid Electric Vehicle Charging Bays:A Case Study in Kuching,Sarawak
19
作者 Jack Kiing Teck Wei Mohanad Taher Mohamed Sayed Roshdy +2 位作者 Bryan Ho Liang Hui Jalal Tavalaei Hadi Nabipour Afrouzi 《Energy Engineering》 2025年第11期4755-4775,共21页
In this article,a hybrid energy storage system powered by renewable energy sources is suggested,which is connected to a grid-tied electric vehicle charging bay(EVCB)in Sarawak and is examined for its techno-economic e... In this article,a hybrid energy storage system powered by renewable energy sources is suggested,which is connected to a grid-tied electric vehicle charging bay(EVCB)in Sarawak and is examined for its techno-economic effects.With a focus on three renewable energy sources,namely hydrokinetic power,solar power,and hydrogen fuel cells,the study seeks to minimize reliance on the electrical grid while meeting the growing demand from the growing electric vehicle(EV)infrastructure.A hybrid renewable energy storage system that combines solar power,hydrogen fuel cells,hydrokinetic power,and the grid was simulated and analyzed.The system design leverages Kuching,Sarawak's unique geographical and renewable source profile,including abundant hydro and solar potential as well as supportive regional energy policies,to optimize economic and environmental performance.The findings showed that the technoeconomic evaluation of the hydrogen storage-integrated EVCB system in Kuching,Sarawak,demonstrates promising performance under current market conditions.The system successfully meets charging demand while generating an annual profit of approximately$5l,104.30 through excess energy sales to the grid.Hydrokinetic power dominates generation,contributing 81.4%of the total output,with the hydrogen fuel cell adding a modest 2.84%.The system achieves a cost of electricity of$0.0617/kWh and a Levelized Cost of Hydrogen of approximately$7.33/kg,confirming its economic feasibility.With a total investment of approximately$2.43 million,the hydrogen storage subsystem represents the largest cost share at 55.2%($1.34 million).A high renewable fraction of 97.2%enhances the system's sustainability,which is further supported by significant annual emissions reductions of approximately 102,209 kg of carbon dioxide,8.48 kg of sulfur dioxide,and 43.1 kg of nitrogen oxides.These results demonstrate that the proposed hybrid EVCB exhibits excellent economic and environmental sustainability,making it a viable option for Sarawak's sustainable electric vehicle charging infrastructure. 展开更多
关键词 Hydrogen storage PHOTOVOLTAIC hydrokinetic electric vehicle charging SARAWAK
在线阅读 下载PDF
Intelligent Operations: Global Public High-Power Charging Networks
20
作者 Anke Freitag Prashan De Silva 《Journal of Traffic and Transportation Engineering》 2025年第1期1-16,共16页
The global public HPC(high-power charging)network for EVs(electric vehicles)is rapidly expanding.This growth is crucial for supporting the increasing adoption of EVs but highlights the industry’s early stage.Regional... The global public HPC(high-power charging)network for EVs(electric vehicles)is rapidly expanding.This growth is crucial for supporting the increasing adoption of EVs but highlights the industry’s early stage.Regional maturity varies,with China leading due to strong government support,followed by Europe and the United States.A significant challenge is the lack of industry standards,causing inconsistencies in charger types and payment systems.Efforts are underway,to ensure interoperability and reliability.Interoperability is crucial for the success of EV HPC infrastructure,ensuring seamless integration among charge points,management systems,and service providers.Despite the use of protocols like the OCPP(Open Charge Point Protocol),variations in implementation create complexities.Ensuring uniform standards across the ecosystem is essential for reliability and efficiency.Vendor-specific error codes,which are more detailed than standardized codes,are vital for diagnosing issues but lack standardization,adding complexity.Addressing these challenges is key to supporting widespread EV adoption and enhancing user experience.To provide a compelling driver value proposition,EV charging services must be reliable and seamless.The operations and maintenance of the HPC network must be cost-effective and leverage the intelligence of the integrated ecosystem.The technical complexity of managing high-power DC charging,combined with diverse authentication and payment systems,results in numerous potential issues.Moving from reactive to predictive maintenance is essential for undisrupted operations and a smooth driver experience.Shell’s Intelligent Operations Technology Strategy incorporates GenAI elements in its advanced analytics and operational performance management tools.By ingesting big data from multiple sources across the EV ecosystem,Shell engineers can perform detailed pattern recognition and targeted troubleshooting.Monitoring,configurable alerting,and remote fixing based on auto-healing and targeted auto-allocation enhance charger availability and reduce downtime.This automation has evolved Shell’s maintenance and operations strategy from reactive to predictive,improving overall charger performance and user satisfaction.Key achievements include transitioning to prescriptive and preventive asset management approaches,significantly improving uptime and charging experience,and increasing commercial value through cost reduction and enhanced revenue.Future challenges include evolving OCPP,integrating data from non-OCPP systems,and ensuring interoperability across diverse systems.Standardization and cross-collaboration within the industry are essential for smooth interoperability,higher uptime,and increased CSR(charging success rate).Technological innovations will further shape the industry,promoting stabilization and efficiency as it matures. 展开更多
关键词 e-Mobility charging ecosystem intelligent operations predictive maintenance GenAI
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部