The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through spac...The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.展开更多
Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a...Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.展开更多
Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thi...Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer.展开更多
A photoinduced intramolecular charge transfer complex(ICTC)-enabled photoreduction of trifluoromethyl phosphonium salt for the trifluoromethylation of heteroarenes was developed.It offers a convenient approach to intr...A photoinduced intramolecular charge transfer complex(ICTC)-enabled photoreduction of trifluoromethyl phosphonium salt for the trifluoromethylation of heteroarenes was developed.It offers a convenient approach to introduce trifluoromethyl group to a wide range of aromatic heterocycles,such as indoles,pyrrole,substituted benzene,coumarin,and chromone.This strategy provides operational simplicity,photocatalyst-,transition metal-,and oxidant-free conditions,making it highly advantageous.展开更多
Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as high...Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion.展开更多
In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the s...In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the static electrochemical impedance spectroscopy(SEIS)under open circuit voltage(OCV)conditions,and the dynamic EIS(DEIS)under dynamic conditions are widely used to investigate charge transfer reactions in LIBs.In spite of great progresses achieved,it is still an open question how to decouple charge transfer reactions under dynamic conditions,especially under conditions of different charge/discharge rates and state of charges(SOCs).To address the above challenges,this work develops a unified framework to digitize,visualize,and finally decouple charge transfer reactions in LIBs under dynamic conditions.In detail:(i)a set of matrix-based numerical solutions to GCD,SEIS,and DEIS are deduced for LIBs;(ii)an open-source DEIS-Toolbox@LIB to digitize/visualize charge transfer reactions is developed;(iii)EIS under dynamic and OCV conditions are discriminated;and(iv)a dynamic decoupling of charge transfer reactions is achieved with respect to core parameters under dynamic conditions for LIBs.The developed framework serves to digitize/visualize/decouple charge transfer reactions under dynamic conditions,and then to unveil limiting factors of fast charge/discharge and triggering mechanisms of side reactions for batteries.展开更多
The development of efficient green energy technology is imperative in the face of energy crises and environmental concerns.Photocatalysis,which utilizes solar energy for processes such as carbon dioxide(CO_(2)) reduct...The development of efficient green energy technology is imperative in the face of energy crises and environmental concerns.Photocatalysis,which utilizes solar energy for processes such as carbon dioxide(CO_(2)) reduction,organic pollutants degradation,and hydrogen(H_(2)) production through water splitting,is a promising approach.The key to high-efficiency photocatalysis lies in the design of superior photocatalysts.Graphene quantum dots(GQDs) have sparked significant interest in photocatalysis due to their exceptional up conversion photoluminescence(UCPL),strong light-capturing capability,and unique photoinduced charge transfer properties.However,their standalone use is limited by stability and activity.By integrating GQDs into composite photocatalysts,the separation of photogenerated electron-hole pairs is enhanced,boosting photocatalytic performance.This review provides the first overview and summary of the preparation methods of GQDs in photocatalysts,encompassing top-down and bottom-up strategy.Subsequently,a pioneering detailed summary was made on the applications of GQDs-semiconductor composites(metal organic frameworks,CdS,and bismuth-based oxides,etc.) in photocatalytic reactions such as CO_(2) reduction,organic pollutant degradation,and H_(2) generation.Furthermore,the corresponding representative examples and mechanisms are also elaborated and discussed respectively.Finally,the challenges and prospects for GQDs-based photocatalysts in the field of photocatalysis are proposed.This review provides inspiration and guidance for the development of efficient GQDs-based photocatalysts.展开更多
Photoredox-mediated reversible-deactivation radical polymerization(RDRP)is an effective approach to synthesize polymers with defined composition and architecture.Current photoinduced RDRP primarily depends on outer-sp...Photoredox-mediated reversible-deactivation radical polymerization(RDRP)is an effective approach to synthesize polymers with defined composition and architecture.Current photoinduced RDRP primarily depends on outer-sphere electron transfer or homolysis mechanisms.Herein,we describe an example of iodine-mediated RDRP facilitated by photoinduced charge transfer complex(CTC)catalysis.The approach uses cheap and easily accessible N^(-)heterocyclic nitrenium salt(NHN^(+)...I^(-))as the photoactive CTC.Upon the irradiation of visible light,NHN^(+)...I^(-)undergoes single electron transfer to generate NHN·and I·radicals.The NHN·radical activates dormant Pn-I polymers via inner-sphere single electron transfer,leading to the propagating Pn·radical for chain growth and the I^(-)anion for recovering the CTC,and the I·radical deactivates the polymerization via coupling with Pn·.展开更多
Photocatalysts show broad application potential in clean energy conversion by utilizing solar energy for chemical transformations[1–3].However,single-component photocatalysts are severely limited in practical applica...Photocatalysts show broad application potential in clean energy conversion by utilizing solar energy for chemical transformations[1–3].However,single-component photocatalysts are severely limited in practical applications due to narrow light absorption ranges and high recombination rates of photogenerated carriers[4].S-scheme heterojunctions preserve optimal redox potentials,offering broad application prospects in solar energy conversion and environmental remediation[5,6].Since photocatalytic reactions occur predominantly at the material interface,a spatially resolved investigation of charge transfer is essential for understanding carrier dynamics at the nanoscale[7].In this context,the highlighted study employs Kelvin probe force microscopy(KPFM)to elucidate the real-space charge-transfer mechanisms in CdS/BiOBr S-scheme heterojunctions,providing direct and quantitative insight into interfacial charge behavior[8].展开更多
Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between differen...Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between different material classes,such as oxides and nitrides,remain underexplored.Here we present the fabrication of atomically sharp heterointerfaces between antiperovskite Ni_(3)InN and perovskite SrVO_(3).Leveraging layer-resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we identified pronounced charge transfer across the well-ordered interface.First-principles calculations confirmed our experimental observations and further predicted an emergent magnetic moment within the Ni_(3)InN layer due to the charge transfer.These findings pave the way for novel electronic and spintronic applications by enabling tunable interfacial properties in nitride/oxide systems.展开更多
Photocatalytic CO_(2)reduction into value-added chemicals holds significant promise for carbon-neutral recycling and solar-to-fuel conversion.Enhancing reaction efficiency by manipulating charge transfer is a key appr...Photocatalytic CO_(2)reduction into value-added chemicals holds significant promise for carbon-neutral recycling and solar-to-fuel conversion.Enhancing reaction efficiency by manipulating charge transfer is a key approach to unlocking this potential.In this work,we construct a two-dimensional/twodimensional(2D/2D)FeSe_(2)/protonated carbon nitride(FeSe_(2)/PCN)heterostructure to promote the interfacial charge transfer dynamics,leading to a four-fold improved conversion efficiency of photocatalytic CO_(2)reduction with near 100%CO selectivity.Combining in situ X-ray photoelectron spectroscopy,in situ soft X-ray absorption spectroscopy,and femtosecond transient absorption spectroscopy,it is revealed that FeSe_(2)acts as an electron acceptor upon photoexcitation,introducing an additional electron transfer pathway from PCN to FeSe_(2)that suppresses radiative recombination and promotes charge transfer.In situ X-ray absorption fine structure spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy,and density functional theory calculation further unravel that the electron-enriched FeSe_(2)functions as the active sites for CO_(2)activation and significantly reduces the energy barrier of key intermediate COOH*formation,which is the rate-determined step for CO generation.This work underscores the importance of regulating photocarrier relaxation pathways to achieve effective spatial charge separation for promoted photocatalytic CO_(2)reduction and demonstrates the powerful functions of in situ spectroscopies in in-depth understanding of the photocatalytic mechanism.展开更多
Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water spl...Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm^(-2) at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.展开更多
Efficient interfacial charge transfer and robust interfacial interactions are crucial for achieving the superior spatial separation of carriers and developing efficient heterojunction photocatalysts.Herein,BiOBr/AgBr ...Efficient interfacial charge transfer and robust interfacial interactions are crucial for achieving the superior spatial separation of carriers and developing efficient heterojunction photocatalysts.Herein,BiOBr/AgBr S-scheme heterojunctions are synthesized via the co-sharing of Br atoms using an ion-exchange approach,which involves the in-situ growth of AgBr nanoparticles on the surfaces of BiOBr nanosheets.It is revealed that successful construction of a high-quality interface with strong interactions via Br atom bridge between BiOBr and AgBr,which provided a rapid migration channel for charge carriers.In addition,in-situ XPS,Kelvin probe force microscopy,and electron spin resonance evaluations confirmed the establishment of an S-scheme charge-transfer pathway in this tightly contacted heterojunction,which could efficiently prevent the recombination of photogenerated carriers while retaining carriers with a high redox capacity.Finally,the photocatalytic test confirmed that the BiOBr/AgBr heterojunction showed excellent photocatalytic performance and wide applicability thanks to the construction of high quality heterojunction.Overall,this work highlights the importance of rational designing of heterogeneous interfaces at the atomic level in photocatalysis,and contributes to rationally design BiOBr-based S-scheme heterojunctions photocatalytic materials with high quality atomic cosharing interfaces.展开更多
Molecular doping has become a widely used method to modulate the electric performance of organic semiconductors(OSC).Highly effective charge transfer during molecular doping is desired to achieve ideal electrical cond...Molecular doping has become a widely used method to modulate the electric performance of organic semiconductors(OSC).Highly effective charge transfer during molecular doping is desired to achieve ideal electrical conductivity.Two types of charge transfer mechanisms are widely accepted in molecular doping process:integer charge transfer(ICT)and charge transfer complex(CTC).In this review,fundamental principles of two mechanisms are revisited and the characterization methods are depicted.The key points for the formation of two mechanisms are highlighted from aspects of molecular structure and process engineering.Then,the strategies to improve the proportion of ICT are discussed.Finally,the challenges and perspectives for future developments in the molecular doping of polymer semiconductors are provided.展开更多
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl...Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.展开更多
Establishing an effective charge transfer mechanism in carbon nitride(g-C_(3)N_(4))to enhance its photocatalytic activity remains a limiting nuisance.Herein,the combination design of a single Cu atom with hollow g-C_(...Establishing an effective charge transfer mechanism in carbon nitride(g-C_(3)N_(4))to enhance its photocatalytic activity remains a limiting nuisance.Herein,the combination design of a single Cu atom with hollow g-C_(3)N_(4)nanospheres(Cu-N_(3)structure)has been proven to offer significant opportunities for this crucial challenge.Moreover,this structure endows two pathways for charge transfer in the reaction,namely,the N atoms in the three-dimensional planar structure are only bonded with a single Cu atom,and charge transfer occurs between the plane and the layered structure due to the bending of the interlayered g-C_(3)N_(4)hollow nanospheres.Notably,Cu-N_(3)and hollow nanosphere structures have been certified to greatly enhance the efficiency of photogenerated carrier separation and transfer between the layers and planes by ultrafast spectral analysis.As a result,this catalyst possesses unparalleled photocatalytic efficiency.Specifically,the hydrogen production rate up to 2040μmol h^(−1) g^(−1),which is 51 times that of pure C_(3)N_(4)under visible light conditions.The photocatalytic degradation performance of tetracycline and oxidation performance of benzene is also expressed,with a degradation rate of 100%,a conversion of 97.3%and a selectivity of 99.9%.This work focuses on the structure-activity relationship to provide the possibilities for the development of potential photocatalytic materials.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen...The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Black phosphorus(BP)holds tremendous promise for HER and OER electrocatalysis owing to its fully exposed atoms and high carrier mobility.However,the elec-trocatalytic performance of BP is still much lower than the expected theoretical limit,presenting an exciting challenge for further advancements.Herein,we embed electrochemically exfoliated few-layer BP nanosheets in higher Fermi level(EF)of cobalt,nitrogen co-doped carbons to form a new heterojunction(CoNC-BP),as efficient bifunctional electrocatalysts toward HER and OER for the advancement overall water splitting applications.A directed interfacial electron transfer is realized from CoNC to BP,facilitated by the lowering Fermi level(EF).This interfacial electron transfer plays a crucial role in optimizing the adsorption and desorption of active intermediates,while also introducing an abundance of hypervalent Co sites.These factors collectively contribute to the remarkable electrocatalytic activities of HER and OER performance,leading to the efficient performance of the developed CoNC-BP heterojunction in water-splitting applications.This work demonstrates a promising breakthrough that can inspire the design of high-efficiency catalysts.展开更多
Nitrogen-doped three-dimensional graphene(N-doped 3D-graphene)is a graphene derivative with excellent adsorption capacity,large specific surface area,high porosity,and optoelectronic properties.Herein,N-doped 3D-graph...Nitrogen-doped three-dimensional graphene(N-doped 3D-graphene)is a graphene derivative with excellent adsorption capacity,large specific surface area,high porosity,and optoelectronic properties.Herein,N-doped 3D-graphene/Si heterojunctions were grown in situ directly on silicon(Si)substrates via plasma-assisted chemical vapor deposition(PACVD),which is promising for surface-enhanced Raman scattering(SERS)substrates candidates.Combined analyses of theoretical simulation,incorporating N atoms in 3D-graphene are beneficial to increase the electronic state density of the system and enhance the charge transfer between the substrate and the target molecules.The enhancement of the optical and electric fields benefits from the stronger light-matter interaction improved by the natural nano-resonator structure of N-doped 3D-graphene.The as-prepared SERS substrates based on N-doped 3D-graphene/Si heterojunctions achieve ultra-low detection for various molecules:10^(-8)M for methylene blue(MB)and 10^(-9)M for crystal violet(CRV)with rhodamine(R6G)of 10^(10)M.In practical detected,10^(-8)M thiram was precisely detected in apple peel extract.The results indicate that N-doped 3D-graphene/Si heterojunctions based-SERS substrates have promising applications in low-concentration molecular detection and food safety.展开更多
A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation...A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.22273057)the Universities Joint Laboratory of Guangdong,Hong Kong and Macao(No.2021LSYS009)+2 种基金the Natural Science Foundation of Guangdong Province(Nos.2022A1515011661,2023A1515012631)the Chemistry and Chemical Engineering Guangdong Laboratory(No.1922003)Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302009)。
文摘The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BZ2022007)the National Natural Science Foundation of China(No.92261202)+1 种基金the Ministry of Science and Technology of the People’s Republic of China(No.2021YFE0114800)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2021-1027).
文摘Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.
文摘Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer.
文摘A photoinduced intramolecular charge transfer complex(ICTC)-enabled photoreduction of trifluoromethyl phosphonium salt for the trifluoromethylation of heteroarenes was developed.It offers a convenient approach to introduce trifluoromethyl group to a wide range of aromatic heterocycles,such as indoles,pyrrole,substituted benzene,coumarin,and chromone.This strategy provides operational simplicity,photocatalyst-,transition metal-,and oxidant-free conditions,making it highly advantageous.
基金financial supports provided by the Natural Science Foundation of Fujian Province(No.2024J01195)the National Nature Science Foundation of China(No.21905279)+1 种基金Sanming University(Nos.22YG11 and PYT2201)the Education Scientific Research Project of Youth Teachers in the Education Department of Fujian Province(No.JAT220351).
文摘Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion.
基金supported by the National Natural Science Foundation of China(22479092,22078190)。
文摘In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the static electrochemical impedance spectroscopy(SEIS)under open circuit voltage(OCV)conditions,and the dynamic EIS(DEIS)under dynamic conditions are widely used to investigate charge transfer reactions in LIBs.In spite of great progresses achieved,it is still an open question how to decouple charge transfer reactions under dynamic conditions,especially under conditions of different charge/discharge rates and state of charges(SOCs).To address the above challenges,this work develops a unified framework to digitize,visualize,and finally decouple charge transfer reactions in LIBs under dynamic conditions.In detail:(i)a set of matrix-based numerical solutions to GCD,SEIS,and DEIS are deduced for LIBs;(ii)an open-source DEIS-Toolbox@LIB to digitize/visualize charge transfer reactions is developed;(iii)EIS under dynamic and OCV conditions are discriminated;and(iv)a dynamic decoupling of charge transfer reactions is achieved with respect to core parameters under dynamic conditions for LIBs.The developed framework serves to digitize/visualize/decouple charge transfer reactions under dynamic conditions,and then to unveil limiting factors of fast charge/discharge and triggering mechanisms of side reactions for batteries.
基金financial support provided by National Natural Science Foundation of China(No.22262024)research start-up funding from Changzhou University(No.ZMF23020031)+1 种基金the technical support from the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology,Jiangxi Province Academic and Technical Leader of Major Disciplines(No.20232BCJ22008)Key Project of Natural Science Foundation of Jiangxi Province(No.20232ACB204007)。
文摘The development of efficient green energy technology is imperative in the face of energy crises and environmental concerns.Photocatalysis,which utilizes solar energy for processes such as carbon dioxide(CO_(2)) reduction,organic pollutants degradation,and hydrogen(H_(2)) production through water splitting,is a promising approach.The key to high-efficiency photocatalysis lies in the design of superior photocatalysts.Graphene quantum dots(GQDs) have sparked significant interest in photocatalysis due to their exceptional up conversion photoluminescence(UCPL),strong light-capturing capability,and unique photoinduced charge transfer properties.However,their standalone use is limited by stability and activity.By integrating GQDs into composite photocatalysts,the separation of photogenerated electron-hole pairs is enhanced,boosting photocatalytic performance.This review provides the first overview and summary of the preparation methods of GQDs in photocatalysts,encompassing top-down and bottom-up strategy.Subsequently,a pioneering detailed summary was made on the applications of GQDs-semiconductor composites(metal organic frameworks,CdS,and bismuth-based oxides,etc.) in photocatalytic reactions such as CO_(2) reduction,organic pollutant degradation,and H_(2) generation.Furthermore,the corresponding representative examples and mechanisms are also elaborated and discussed respectively.Finally,the challenges and prospects for GQDs-based photocatalysts in the field of photocatalysis are proposed.This review provides inspiration and guidance for the development of efficient GQDs-based photocatalysts.
基金Supported by the National Natural Science Foundation of China(Nos.21773240 and 22173103)the University of the Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences(No.BNLMS2023014)。
文摘Photoredox-mediated reversible-deactivation radical polymerization(RDRP)is an effective approach to synthesize polymers with defined composition and architecture.Current photoinduced RDRP primarily depends on outer-sphere electron transfer or homolysis mechanisms.Herein,we describe an example of iodine-mediated RDRP facilitated by photoinduced charge transfer complex(CTC)catalysis.The approach uses cheap and easily accessible N^(-)heterocyclic nitrenium salt(NHN^(+)...I^(-))as the photoactive CTC.Upon the irradiation of visible light,NHN^(+)...I^(-)undergoes single electron transfer to generate NHN·and I·radicals.The NHN·radical activates dormant Pn-I polymers via inner-sphere single electron transfer,leading to the propagating Pn·radical for chain growth and the I^(-)anion for recovering the CTC,and the I·radical deactivates the polymerization via coupling with Pn·.
文摘Photocatalysts show broad application potential in clean energy conversion by utilizing solar energy for chemical transformations[1–3].However,single-component photocatalysts are severely limited in practical applications due to narrow light absorption ranges and high recombination rates of photogenerated carriers[4].S-scheme heterojunctions preserve optimal redox potentials,offering broad application prospects in solar energy conversion and environmental remediation[5,6].Since photocatalytic reactions occur predominantly at the material interface,a spatially resolved investigation of charge transfer is essential for understanding carrier dynamics at the nanoscale[7].In this context,the highlighted study employs Kelvin probe force microscopy(KPFM)to elucidate the real-space charge-transfer mechanisms in CdS/BiOBr S-scheme heterojunctions,providing direct and quantitative insight into interfacial charge behavior[8].
基金supported by the Beijing Natural Science Foundation(Grant No.JQ24002)the National Key Basic Research Program of China(Grant No.2020YFA0309100)+3 种基金the National Natural Science Foundation of China(Grant Nos.U22A20263,52250308,12304158,12325401,12274069,12404102,and 12474096)the Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(Grant No.YSBR-084)the CAS Youth Interdisciplinary Team,the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120014)the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,and the International Young Scientist Fellowship of Institute of Physics,CAS.
文摘Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between different material classes,such as oxides and nitrides,remain underexplored.Here we present the fabrication of atomically sharp heterointerfaces between antiperovskite Ni_(3)InN and perovskite SrVO_(3).Leveraging layer-resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we identified pronounced charge transfer across the well-ordered interface.First-principles calculations confirmed our experimental observations and further predicted an emergent magnetic moment within the Ni_(3)InN layer due to the charge transfer.These findings pave the way for novel electronic and spintronic applications by enabling tunable interfacial properties in nitride/oxide systems.
基金supported by the National Natural Science Foundation of China(12241502,92045301)Fundamental Research Funds for the Central Universities(20720220010)+7 种基金USTC Research Funds of the Double First-Class Initiative(YD2310002012)the Launching Special Funds of Scientific Research for Introduced Talents from University of Science and Technology of China(KY2310000060)National Key Research and Development Program of China(2019YFA0405602)Anhui Provincial Natural Science Foundation(2408085QB049)the Instruments Center for Physical Science and USTC Center for Micro and Nanoscale Research and Fabrication,University of Science and Technology of Chinathe solid supports from the BL03U,BL10B,and BL12B beamlines of the National Synchrotron Radiation Laboratory(NSRL,Hefei)the Shanghai Synchrotron Radiation Facility(SSRF,Shanghai)of BL11B(https://cstr.cn/31124.02.SSRF.BL11B)and BL14W1(https://cstr.cn/31124.02.SSRF.BL14W1)beamlines for the assistance on XAFS measurementsAnhui Chuangpu Instruments Co.,Ltd.for the assistance in the test of Table XAFS。
文摘Photocatalytic CO_(2)reduction into value-added chemicals holds significant promise for carbon-neutral recycling and solar-to-fuel conversion.Enhancing reaction efficiency by manipulating charge transfer is a key approach to unlocking this potential.In this work,we construct a two-dimensional/twodimensional(2D/2D)FeSe_(2)/protonated carbon nitride(FeSe_(2)/PCN)heterostructure to promote the interfacial charge transfer dynamics,leading to a four-fold improved conversion efficiency of photocatalytic CO_(2)reduction with near 100%CO selectivity.Combining in situ X-ray photoelectron spectroscopy,in situ soft X-ray absorption spectroscopy,and femtosecond transient absorption spectroscopy,it is revealed that FeSe_(2)acts as an electron acceptor upon photoexcitation,introducing an additional electron transfer pathway from PCN to FeSe_(2)that suppresses radiative recombination and promotes charge transfer.In situ X-ray absorption fine structure spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy,and density functional theory calculation further unravel that the electron-enriched FeSe_(2)functions as the active sites for CO_(2)activation and significantly reduces the energy barrier of key intermediate COOH*formation,which is the rate-determined step for CO generation.This work underscores the importance of regulating photocarrier relaxation pathways to achieve effective spatial charge separation for promoted photocatalytic CO_(2)reduction and demonstrates the powerful functions of in situ spectroscopies in in-depth understanding of the photocatalytic mechanism.
文摘Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm^(-2) at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.
基金supported by the National Natural Science Foundation of China (No. 12204207)the National Natural Science Foundation of China-Yunnan Joint Fund (No. U2102215)+1 种基金the National Natural Science Foundation of High and Foreign Experts Introduction Plan (No. G2022039008L)Yunnan XingDian Youth Talent Support Program (No. XDYC-QNRC-2022-0591)。
文摘Efficient interfacial charge transfer and robust interfacial interactions are crucial for achieving the superior spatial separation of carriers and developing efficient heterojunction photocatalysts.Herein,BiOBr/AgBr S-scheme heterojunctions are synthesized via the co-sharing of Br atoms using an ion-exchange approach,which involves the in-situ growth of AgBr nanoparticles on the surfaces of BiOBr nanosheets.It is revealed that successful construction of a high-quality interface with strong interactions via Br atom bridge between BiOBr and AgBr,which provided a rapid migration channel for charge carriers.In addition,in-situ XPS,Kelvin probe force microscopy,and electron spin resonance evaluations confirmed the establishment of an S-scheme charge-transfer pathway in this tightly contacted heterojunction,which could efficiently prevent the recombination of photogenerated carriers while retaining carriers with a high redox capacity.Finally,the photocatalytic test confirmed that the BiOBr/AgBr heterojunction showed excellent photocatalytic performance and wide applicability thanks to the construction of high quality heterojunction.Overall,this work highlights the importance of rational designing of heterogeneous interfaces at the atomic level in photocatalysis,and contributes to rationally design BiOBr-based S-scheme heterojunctions photocatalytic materials with high quality atomic cosharing interfaces.
基金the National Natural Science Foundation of China (No. 92263109)the Shanghai Rising-Star Program (No. 22QA1410400)Natural Science Foundation of Shanghai (No. 23ZR1472200).
文摘Molecular doping has become a widely used method to modulate the electric performance of organic semiconductors(OSC).Highly effective charge transfer during molecular doping is desired to achieve ideal electrical conductivity.Two types of charge transfer mechanisms are widely accepted in molecular doping process:integer charge transfer(ICT)and charge transfer complex(CTC).In this review,fundamental principles of two mechanisms are revisited and the characterization methods are depicted.The key points for the formation of two mechanisms are highlighted from aspects of molecular structure and process engineering.Then,the strategies to improve the proportion of ICT are discussed.Finally,the challenges and perspectives for future developments in the molecular doping of polymer semiconductors are provided.
基金supported by the Research Program of Jilin Province Development and Reform Commission(2024C018-6).
文摘Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.
基金supported by the Hainan Province Science and Technology Special Fund(No.ZDYF2022SHFZ094)National Natural Science Foundation of China(No.22166016)+1 种基金Hainan Provincial Key Research and Development Program(No.ZDYF2020222)the open-ended fund of Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province(No.AFEPER202205).
文摘Establishing an effective charge transfer mechanism in carbon nitride(g-C_(3)N_(4))to enhance its photocatalytic activity remains a limiting nuisance.Herein,the combination design of a single Cu atom with hollow g-C_(3)N_(4)nanospheres(Cu-N_(3)structure)has been proven to offer significant opportunities for this crucial challenge.Moreover,this structure endows two pathways for charge transfer in the reaction,namely,the N atoms in the three-dimensional planar structure are only bonded with a single Cu atom,and charge transfer occurs between the plane and the layered structure due to the bending of the interlayered g-C_(3)N_(4)hollow nanospheres.Notably,Cu-N_(3)and hollow nanosphere structures have been certified to greatly enhance the efficiency of photogenerated carrier separation and transfer between the layers and planes by ultrafast spectral analysis.As a result,this catalyst possesses unparalleled photocatalytic efficiency.Specifically,the hydrogen production rate up to 2040μmol h^(−1) g^(−1),which is 51 times that of pure C_(3)N_(4)under visible light conditions.The photocatalytic degradation performance of tetracycline and oxidation performance of benzene is also expressed,with a degradation rate of 100%,a conversion of 97.3%and a selectivity of 99.9%.This work focuses on the structure-activity relationship to provide the possibilities for the development of potential photocatalytic materials.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金National Natural Science Foundation of China(Grant No.62004143)Key R&D Program of Hubei Province(Grant No.2022BAA084)+4 种基金Natural Science Foundation of Hubei Province(Grant No.2021CFB133)National Key R&D Program of China(Grant No.2022YFC3902703)Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(Grant No.LCX2021003)Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST),Ministry of Education(Grant No.2021JYBKF05)14th Graduate Ed-ucation Innovation Fund of Wuhan Institute of Technology(Grant Nos.CX2022564 and CX2022451).
文摘The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Black phosphorus(BP)holds tremendous promise for HER and OER electrocatalysis owing to its fully exposed atoms and high carrier mobility.However,the elec-trocatalytic performance of BP is still much lower than the expected theoretical limit,presenting an exciting challenge for further advancements.Herein,we embed electrochemically exfoliated few-layer BP nanosheets in higher Fermi level(EF)of cobalt,nitrogen co-doped carbons to form a new heterojunction(CoNC-BP),as efficient bifunctional electrocatalysts toward HER and OER for the advancement overall water splitting applications.A directed interfacial electron transfer is realized from CoNC to BP,facilitated by the lowering Fermi level(EF).This interfacial electron transfer plays a crucial role in optimizing the adsorption and desorption of active intermediates,while also introducing an abundance of hypervalent Co sites.These factors collectively contribute to the remarkable electrocatalytic activities of HER and OER performance,leading to the efficient performance of the developed CoNC-BP heterojunction in water-splitting applications.This work demonstrates a promising breakthrough that can inspire the design of high-efficiency catalysts.
基金supported by the National Natural Science Foundation of China under Grant(No.62174093)the Natural Science Foundation of Ningbo under Grant(No.202003N4097)+5 种基金the support from the Beijing Institute of Technology Research Fund Program for Young Scholarsthe support from Guangdong Provincial Medical Science and Technology Research(A2019434)the support from Guangdong Provincial Key Laboratory of Computational Science and Material Design(2019B030301001)Fundamental Research Program of Shenzhen(JCYJ20190809174203802)National Natural Science Foundation of Guangdong Province(2022A1515110628)supported by Center for Computational Science and Engineering at Southern University of Science and Technology
文摘Nitrogen-doped three-dimensional graphene(N-doped 3D-graphene)is a graphene derivative with excellent adsorption capacity,large specific surface area,high porosity,and optoelectronic properties.Herein,N-doped 3D-graphene/Si heterojunctions were grown in situ directly on silicon(Si)substrates via plasma-assisted chemical vapor deposition(PACVD),which is promising for surface-enhanced Raman scattering(SERS)substrates candidates.Combined analyses of theoretical simulation,incorporating N atoms in 3D-graphene are beneficial to increase the electronic state density of the system and enhance the charge transfer between the substrate and the target molecules.The enhancement of the optical and electric fields benefits from the stronger light-matter interaction improved by the natural nano-resonator structure of N-doped 3D-graphene.The as-prepared SERS substrates based on N-doped 3D-graphene/Si heterojunctions achieve ultra-low detection for various molecules:10^(-8)M for methylene blue(MB)and 10^(-9)M for crystal violet(CRV)with rhodamine(R6G)of 10^(10)M.In practical detected,10^(-8)M thiram was precisely detected in apple peel extract.The results indicate that N-doped 3D-graphene/Si heterojunctions based-SERS substrates have promising applications in low-concentration molecular detection and food safety.
基金supported by the National Natural Science Foundation of China(No.22001248)the Fundamental Research Funds for the Central Universities and University of Chinese Academy of Sciences.
文摘A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.