BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and...BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.展开更多
Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames w...Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.展开更多
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied....Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.展开更多
Over the past ten years,numerous papers have been published on the use of indocyanine green(ICG)fluorescence in liver surgery for hepatocellular carcinoma(HCC).There are many different applications.The first involves ...Over the past ten years,numerous papers have been published on the use of indocyanine green(ICG)fluorescence in liver surgery for hepatocellular carcinoma(HCC).There are many different applications.The first involves targeting superficial tumors in patients with macronodular cirrhosis and an irregular liver surface.In a minimally invasive setting,the lack of tactile feedback on the hepatic surface makes detecting subcapsular HCC with ultrasound alone challenging.ICG fusion images can mimic the tactile feedback of the hand and act as an ultrasound booster.ICG fluorescence can be used to evaluate tumor residues after minimally invasive thermal ablation.ICG fluorescence imaging can also be used to identify the grade of HCC early on and evaluate the microinvasive component.展开更多
We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent...We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent.The mixing ratios of the four materials are determined by comparing the strength,permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil.Microscopic characteristics of the solidified uncontaminated soil and solidified Zn^(2+)-contaminated soil were observed using scanning electron microscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy.Furthermore,the heavy metals speciation in both pure cement and mixed-material solidified soil was examined,demonstrating the beneficial role of the mixed-type curing agent in stabilizing heavy metals.The research results indicate that Zn^(2+)degrade the strength of the solidified soil by up to 90%.The permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil easily meet standard,especially with Zn^(2+)leaching concentration well below the environmental protection limit.Furthermore,most Zn^(2+)exists in forms with lower biological and chemical reactivity.Both the solidified Zn^(2+)-contaminated soil and uncontaminated soil resulted in the formation of hydrated products containing elements such as silicon,aluminum,calcium,and sulfur.Additionally,the solidified Zn^(2+)-contaminated soil produced zinc-containing compounds and a large amount of rod-shaped ettringite.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposi...BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposited in the appendix and cause disease.At present,there are few studies on schistosomal appendicitis.AIM To explore the differences in epidemiological,clinical and pathological characteristics between schistosomal appendicitis and non-schistosomal appendicitis over the past decade in order to assess the impact of schistosomiasis on appendicitis.METHODS The differences of general data,clinical data and laboratory examination data of patients with appendicitis from October 2013 to October 2023 were retrospectively analyzed.All patients were divided into two groups for analysis.There were 136 patients in schistosomal appendicitis group and 5418 patients in non-schistosomal appendicitis group.RESULTS Schistosomal appendicitis accounted for 2.45%of all patients with appendicitis,and the annual proportion in the past decade was 2.2%,2.9%,1.8%,1.9%,3.4%,3.1%,1.9%,1.6%,3%,2.6%,respectively.The prevalence of schistosomal appendicitis was middle-aged and elderly males,with an average age of 61.73±15.335 years.The main population of non-schistosomal appendicitis was middle-aged men,with an average age of 35.8±24.013 years(P<0.001).The distribution of pathological types of appendicitis was different between the two groups(P<0.001).The incidence of acute suppurative appendicitis in non-schistosomal appendicitis was higher than that in schistosomal appendicitis[odds ratio(OR)=0.504;95%confidence interval(CI):0.349-0.728;P<0.001].The proportion of acute attack of chronic appendicitis in schistosomal appendicitis was higher than that in non-schistosomal appendicitis(OR=2.614;95%CI:1.815-3.763;P<0.001).The proportion of schistosomal appendicitis patients complicated with colorectal cancer was higher than that of nonschistosomal appendicitis patients(OR=5.087;95%CI:1.427-18.132;P=0.012).There was no difference in clinical symptoms between the two groups.In the laboratory examination,there was a significant difference in white blood cells between schistosomal appendicitis and non-schistosomal appendicitis.The level of white blood cells in schistosomal appendicitis group was slightly higher than the upper limit of the normal range.Other statistically significant indicators were in the normal range.CONCLUSION Schistosomal appendicitis is a severe condition that is often associated with intestinal malignancies,potentially leading to a poor prognosis.Schistosomal appendicitis is more likely to be misdiagnosed and missed diagnosed in clinical work because of its nonspecific clinical manifestations and laboratory examination.It is crucial to differentiate schistosomal appendicitis in middle-aged and elderly male patients presenting with appendicitis,and to ensure early detection and treatment.展开更多
Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy densit...Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell.展开更多
0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,...0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.展开更多
BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the para...BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the paradoxical role of C.albicans in CRC,aiming to determine whether it promotes or suppresses tumor development,with a focus on the mechanistic basis linked to its metabolic profile.AIM To investigate the dual role of C.albicans in the development and progression of CRC through metabolite profiling and to establish a prognostic model that integrates the microbial and metabolic interactions in CRC,providing insights into potential therapeutic strategies and clinical outcomes.METHODSA prognostic model integrating C. albicans with CRC was developed, incorporating enrichment analysis, immuneinfiltration profiling, survival analysis, Mendelian randomization, single-cell sequencing, and spatial transcriptomics.The effects of the C. albicans metabolite mixture on CRC cells were subsequently validated in vitro. Theprimary metabolite composition was characterized using liquid chromatography-mass spectrometry.RESULTSA prognostic model based on five specific mRNA markers, EHD4, LIME1, GADD45B, TIMP1, and FDFT1, wasestablished. The C. albicans metabolite mixture significantly reduced CRC cell viability. Post-treatment analysisrevealed a significant decrease in gene expression in HT29 cells, while the expression levels of TIMP1, EHD4, andGADD45B were significantly elevated in HCT116 cells. Conversely, LIME1 expression and that of other CRC celllines showed reductions. In normal colonic epithelial cells (NCM460), GADD45B, TIMP1, and FDFT1 expressionlevels were significantly increased, while LIME1 and EHD4 levels were markedly reduced. Following metabolitetreatment, the invasive and migratory capabilities of NCM460, HT29, and HCT116 cells were reduced. Quantitativeanalysis of extracellular ATP post-treatment showed a significant elevation (P < 0.01). The C. albicans metabolitemixture had no effect on reactive oxygen species accumulation in CRC cells but led to a reduction in mitochondrialmembrane potential, increased intracellular lipid peroxidation, and induced apoptosis. Metabolomic profilingrevealed significant alterations, with 516 metabolites upregulated and 531 downregulated.CONCLUSIONThis study introduced a novel prognostic model for CRC risk assessment. The findings suggested that the C.albicans metabolite mixture exerted an inhibitory effect on CRC initiation.展开更多
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste...Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.展开更多
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b...Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effe...VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.展开更多
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates...Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.展开更多
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens...Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.展开更多
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character...To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.展开更多
文摘BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.014000319/2018-00391.
文摘Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.
文摘Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.
文摘Over the past ten years,numerous papers have been published on the use of indocyanine green(ICG)fluorescence in liver surgery for hepatocellular carcinoma(HCC).There are many different applications.The first involves targeting superficial tumors in patients with macronodular cirrhosis and an irregular liver surface.In a minimally invasive setting,the lack of tactile feedback on the hepatic surface makes detecting subcapsular HCC with ultrasound alone challenging.ICG fusion images can mimic the tactile feedback of the hand and act as an ultrasound booster.ICG fluorescence can be used to evaluate tumor residues after minimally invasive thermal ablation.ICG fluorescence imaging can also be used to identify the grade of HCC early on and evaluate the microinvasive component.
基金Funded by the National Natural Science Foundation of China(Nos.52378360,51978438)。
文摘We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent.The mixing ratios of the four materials are determined by comparing the strength,permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil.Microscopic characteristics of the solidified uncontaminated soil and solidified Zn^(2+)-contaminated soil were observed using scanning electron microscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy.Furthermore,the heavy metals speciation in both pure cement and mixed-material solidified soil was examined,demonstrating the beneficial role of the mixed-type curing agent in stabilizing heavy metals.The research results indicate that Zn^(2+)degrade the strength of the solidified soil by up to 90%.The permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil easily meet standard,especially with Zn^(2+)leaching concentration well below the environmental protection limit.Furthermore,most Zn^(2+)exists in forms with lower biological and chemical reactivity.Both the solidified Zn^(2+)-contaminated soil and uncontaminated soil resulted in the formation of hydrated products containing elements such as silicon,aluminum,calcium,and sulfur.Additionally,the solidified Zn^(2+)-contaminated soil produced zinc-containing compounds and a large amount of rod-shaped ettringite.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
文摘BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposited in the appendix and cause disease.At present,there are few studies on schistosomal appendicitis.AIM To explore the differences in epidemiological,clinical and pathological characteristics between schistosomal appendicitis and non-schistosomal appendicitis over the past decade in order to assess the impact of schistosomiasis on appendicitis.METHODS The differences of general data,clinical data and laboratory examination data of patients with appendicitis from October 2013 to October 2023 were retrospectively analyzed.All patients were divided into two groups for analysis.There were 136 patients in schistosomal appendicitis group and 5418 patients in non-schistosomal appendicitis group.RESULTS Schistosomal appendicitis accounted for 2.45%of all patients with appendicitis,and the annual proportion in the past decade was 2.2%,2.9%,1.8%,1.9%,3.4%,3.1%,1.9%,1.6%,3%,2.6%,respectively.The prevalence of schistosomal appendicitis was middle-aged and elderly males,with an average age of 61.73±15.335 years.The main population of non-schistosomal appendicitis was middle-aged men,with an average age of 35.8±24.013 years(P<0.001).The distribution of pathological types of appendicitis was different between the two groups(P<0.001).The incidence of acute suppurative appendicitis in non-schistosomal appendicitis was higher than that in schistosomal appendicitis[odds ratio(OR)=0.504;95%confidence interval(CI):0.349-0.728;P<0.001].The proportion of acute attack of chronic appendicitis in schistosomal appendicitis was higher than that in non-schistosomal appendicitis(OR=2.614;95%CI:1.815-3.763;P<0.001).The proportion of schistosomal appendicitis patients complicated with colorectal cancer was higher than that of nonschistosomal appendicitis patients(OR=5.087;95%CI:1.427-18.132;P=0.012).There was no difference in clinical symptoms between the two groups.In the laboratory examination,there was a significant difference in white blood cells between schistosomal appendicitis and non-schistosomal appendicitis.The level of white blood cells in schistosomal appendicitis group was slightly higher than the upper limit of the normal range.Other statistically significant indicators were in the normal range.CONCLUSION Schistosomal appendicitis is a severe condition that is often associated with intestinal malignancies,potentially leading to a poor prognosis.Schistosomal appendicitis is more likely to be misdiagnosed and missed diagnosed in clinical work because of its nonspecific clinical manifestations and laboratory examination.It is crucial to differentiate schistosomal appendicitis in middle-aged and elderly male patients presenting with appendicitis,and to ensure early detection and treatment.
基金supported by the National Key R&D Program of China(No.2022YFE0207400)supported by the Xiaomi Young Talents Programsupported by the Youth Innovation Promotion Association CAS(No.Y201768)。
文摘Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell.
基金funded by the National Key R&D Program of China(No.2020YFC150071)partly supported by the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)and the Research Funds for the Interdisciplinary Projects,CHU(No.300104240914)。
文摘0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.
基金Supported by Gansu Province Joint Fund General Program,No.24JRRA878Gansu Provincial Science and Technology Program Project,No.24JRRA1020+2 种基金Gansu Province Key Talent Program,No.2025RCXM006Teaching Research and Reform Program for Postgraduate Education at Gansu University of Traditional Chinese Medicine(GUSTCM),No.YBXM-202406Special Fund for Mentors of“Qihuang Talents”in the First-Level Discipline of Chinese Medicine,No.ZYXKBD-202415。
文摘BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the paradoxical role of C.albicans in CRC,aiming to determine whether it promotes or suppresses tumor development,with a focus on the mechanistic basis linked to its metabolic profile.AIM To investigate the dual role of C.albicans in the development and progression of CRC through metabolite profiling and to establish a prognostic model that integrates the microbial and metabolic interactions in CRC,providing insights into potential therapeutic strategies and clinical outcomes.METHODSA prognostic model integrating C. albicans with CRC was developed, incorporating enrichment analysis, immuneinfiltration profiling, survival analysis, Mendelian randomization, single-cell sequencing, and spatial transcriptomics.The effects of the C. albicans metabolite mixture on CRC cells were subsequently validated in vitro. Theprimary metabolite composition was characterized using liquid chromatography-mass spectrometry.RESULTSA prognostic model based on five specific mRNA markers, EHD4, LIME1, GADD45B, TIMP1, and FDFT1, wasestablished. The C. albicans metabolite mixture significantly reduced CRC cell viability. Post-treatment analysisrevealed a significant decrease in gene expression in HT29 cells, while the expression levels of TIMP1, EHD4, andGADD45B were significantly elevated in HCT116 cells. Conversely, LIME1 expression and that of other CRC celllines showed reductions. In normal colonic epithelial cells (NCM460), GADD45B, TIMP1, and FDFT1 expressionlevels were significantly increased, while LIME1 and EHD4 levels were markedly reduced. Following metabolitetreatment, the invasive and migratory capabilities of NCM460, HT29, and HCT116 cells were reduced. Quantitativeanalysis of extracellular ATP post-treatment showed a significant elevation (P < 0.01). The C. albicans metabolitemixture had no effect on reactive oxygen species accumulation in CRC cells but led to a reduction in mitochondrialmembrane potential, increased intracellular lipid peroxidation, and induced apoptosis. Metabolomic profilingrevealed significant alterations, with 516 metabolites upregulated and 531 downregulated.CONCLUSIONThis study introduced a novel prognostic model for CRC risk assessment. The findings suggested that the C.albicans metabolite mixture exerted an inhibitory effect on CRC initiation.
基金National Nonprofit Institute Research Grant of CAF,No.CAFYBB2018ZA004,No.CAFYBB2023ZA009Fengyun Application Pioneering Project,No.FY-APP-ZX-2023.02。
文摘Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.
基金supported by the National Key Research and Development Program(No.2021YFD1300201)Jilin Provincial Department of Science and Technology Innovation Platform and Talent Special Project(No.20230508090RC).
文摘Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
基金supported by the Natural Science Foundation of Hebei Province(Nos.D2019106042,D2020304038,and D2021106002)the National Natural Science Foundation of China(No.22276099)+1 种基金the State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex(No.2021080544)the Environmental Monitoring Research Foundation of Jiangsu Province(No.2211).
文摘VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.
基金supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_3032).
文摘Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.
基金supported by the National Natural Science Foundation of China(52074045,52274074)the Science Fund for Distinguished Young Scholars of Chongqing(CSTB2022NSCQ-JQX0028).
文摘Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.
基金Funded by the National Natural Science Foundation of Hunan Province,Chinal(No.2021JJ60012)。
文摘To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.