The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)pho...We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).展开更多
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects,metabolic abnormalities,autonomic dysfunction and incompatible immune response.Furthermore,it can also cause functional and ...Diabetes mellitus affects the heart through various mechanisms such as microvascular defects,metabolic abnormalities,autonomic dysfunction and incompatible immune response.Furthermore,it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy(DCM)in the absence of coronary artery disease.As DCM progresses it causes electrical remodeling of the heart,left ventricular dysfunction and heart failure.Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients.In recent studies,significant changes in repolarizing K+currents,Na+currents and L-type Ca^(2+)currents along with impaired Ca^(2+ )homeostasis and defective contractile function have been identified in the diabetic heart.In addition,insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients.There are many diagnostic tools and management options for DCM,but it is difficult to detect its development and to effectively prevent its progress.In this review,diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.展开更多
This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
Taihu Snow (838262) is a home textile manufacturing company listed on the Beijing Stock Exchange in 2022.It is a bedding manufacturer focusing on silk products.The company was esta blished on May 18,2006,Centered arou...Taihu Snow (838262) is a home textile manufacturing company listed on the Beijing Stock Exchange in 2022.It is a bedding manufacturer focusing on silk products.The company was esta blished on May 18,2006,Centered around the"Taihu Snow"brand,its products cover suite products (such as pillowcases,quilt covers,sheets),quilt cores,silk scarves and otheremerging retail products.展开更多
Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder.Despite the availability of numerous pharmacotherapies,a range of adverse reactions,including hypoglycemia,gastrointestinal discomfort,and lactic acidosi...Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder.Despite the availability of numerous pharmacotherapies,a range of adverse reactions,including hypoglycemia,gastrointestinal discomfort,and lactic acidosis,limits their patient applicability and long-term application.Therefore,it is necessary to screen novel therapeutic drugs for T2DM treatment that have high efficacy but few adverse effects.AMP-activated protein kinase(AMPK)stands out as one of the most powerful targets for T2DM treatment.It can be activated through energysensing or calcium signaling.Medications that activate AMPK through the energy-sensing mechanism exhibit remarkable potency,but they are accompanied by lactic acidosis,carrying an alarmingly high mortality rate.Interestingly,medications that activate AMPK through calcium signaling,such as gliclazide,seldom induce lactic acidosis.However,the efficacy of gliclazide is much lower than metformin.Therefore,it is necessary to explore targets that activate AMPK via calcium signaling to avoid lactic acidosis while maintaining high potency.Ion channels are the main controller of intracellular calcium flow.Specific agonists and inhibitors targeting ion channels have been reported to activate AMPK.In this review,we will summarize the structure and function of calcium-permeable ion channels and discuss the potential of targeting these calcium channels for T2DM treatment.展开更多
The huge carrier transfer resistance caused by large-sized"nitrogen pot"severely limits the photocatalytic performance of carbon nitride(CN).This study aims to explore the selection principle of metal ion br...The huge carrier transfer resistance caused by large-sized"nitrogen pot"severely limits the photocatalytic performance of carbon nitride(CN).This study aims to explore the selection principle of metal ion bridges for constructing dual carrier-transfer channels to delivery carriers to respectively active sites using photodegradation of phenol as the model reaction.Density functional theory(DFT)calculation was used to optimize the structure model of nitrogen vacancies(Nv,provide active sites for reduction of O_(2) and oxidation of phenol)and metal ions(Fe^(3+),Co^(2+),Ni^(2+)or Cu^(2+))co-modified CN,and screen metal ion bridges based on the three parameters including bonding state of metal ion and"nitrogen pot",electrostatic potential(ESP)distribution around the active sites,and three-electron bond length.Both calculation results and activity data show that Fe^(3+),Co^(2+)and Ni^(2+)can construct dual carrier-transfer channels to promote the degradation of phenol while Cu^(2+)cannot Ny and Fe^(3+)co-modified CN(Fe/N_(v)-CN)showed the best catalytic performance among various catalysts and was used as the model catalyst for the detailed characterization to verify the calculation results.This work provides not only the novel strategy for constructing dual carrier-transfer channels in CN,but also the crucial basis for computer simulation as a prediction tool of catalyst structure design rationality.展开更多
The distribution of the sediment material storage quantity along the debris flow channels(SMSQ_DFC)can provide a foundation for runoffgenerated debris flow prediction or susceptibility assessment.Current models for es...The distribution of the sediment material storage quantity along the debris flow channels(SMSQ_DFC)can provide a foundation for runoffgenerated debris flow prediction or susceptibility assessment.Current models for estimating SMSQ_DFC do not consider the capacity of the channel cross-section to accommodate sediment materials.This accommodation condition serves as a limiting factor in determining whether the expected surplus of sediment materials can ultimately be stored.To address this issue,a mass-conservative index was used to represent the balance of deposit materials at any cross-section,considering the influx from upstream,outflux to downstream,and accommodation capacity.Based on this index,a new model for estimating SMSQ_DFC was developed and subsequently evaluated.The evaluation results show that the model meets the accuracy requirements with average error rates of 14.06%for self-validation and 14.81%for generalization ability validation.To assess its practical applications,the model was applied to the Yeniu Gully in Wenchuan County,Sichuan Province,an area with detailed field survey data.The results show that the model exhibits a commendable performance.Compared to traditional theoretical and semi-theoretical statistical models,our model is easier to use(input parameters can be obtained using Geographic Information Systems(GIS)).The modeling parameters chosen in this study have more theoretical significance than those used in existing purely statistical models,offering more effective technical support for estimating SMSQ_DFC.展开更多
Constructing silicon(Si)-based composite electrodes that possess high energy density,long cycle life,and fast charging capability simultaneously is critical for the development of high performance lithium-ion batterie...Constructing silicon(Si)-based composite electrodes that possess high energy density,long cycle life,and fast charging capability simultaneously is critical for the development of high performance lithium-ion batteries for mitigating range anxiety and slow charging issues in new energy vehicles.Herein,a thick silicon/carbon composite electrode with vertically aligned channels in the thickness direction(VC-SC)is constructed by employing a bubble formation method.Both experimental characterizations and theoretical simulations confirm that the obtained vertical channel structure can effectively address the problem of sluggish ion transport caused by high tortuosity in conventional thick electrodes,conspicuously enhance reaction kinetics,reduce polarization and side reactions,mitigate stress,increase the utilization of active materials,and promote cycling stability of the thick electrode.Consequently,when paired with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),the VC-SC||NCM622 pouch type full cell(~6.0 mAh cm^(-2))exhibits significantly improved rate performance and capacity retention compared with the SC||NCM622 full cell with the conventional silicon/carbon composite electrode without channels(SC)as the anode.The assembled VC-SC||NCM622 pouch full cell with a high energy density of 490.3 Wh kg^(-1)also reveals a remarkable fast charging capability at a high current density of 2.0 mA cm^(-2),with a capacity retention of 72.0%after 500 cycles.展开更多
Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN cha...Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.展开更多
Aqueous zinc-ion batteries(ZIBs)are promising candidates for next-generation energy storage,but the problems related to Zn dendrites and side reactions severely hinder their practical applications.Herein,a self-recogn...Aqueous zinc-ion batteries(ZIBs)are promising candidates for next-generation energy storage,but the problems related to Zn dendrites and side reactions severely hinder their practical applications.Herein,a self-recognition separator based on a Bi-based metal-organic framework(GF@CAU-17)is developed for ion management to achieve highly reversible Zn anodes.The GF@CAU-17 has self-recognition behavior to customize selective Zn^(2+)channels,effectively repelling SO_(4)^(2-)and H_(2)O,but facilitating Zn^(2+)conduction.The inherent properties of CAU-17 result in the repulsion of SO_(4)^(2-)ions while disrupting the hydrogen bond network among free H_(2)O molecules,restraining side reactions and by-products.Simultaneously,the zincophilic characteristic of CAU-17 expedites the desolvation of[Zn(H_(2)O)6]^(2+),leading to a self-expedited Zn^(2+)ion pumping effect that dynamically produces a steady and homogeneous Zn^(2+)ion flux,and thereby alleviates concentration polarization.Consequently,a symmetric cell based on the GF@CAU-17 separator can achieve a long lifespan of 4450 h.Moreover,the constructed Zn//GF@CAU-17//MnO_(2)cell delivers a high specific capacity of 221.8 mAh g^(-1)and 88.0%capacity retention after 2000 cycles.展开更多
In this paper,we investigate the performance of physical layer security(PLS)over reconfigurable intelligent surfaces(RIS)-aided wireless communication systems,where all fading channels are modeled with Fisher-Snedecor...In this paper,we investigate the performance of physical layer security(PLS)over reconfigurable intelligent surfaces(RIS)-aided wireless communication systems,where all fading channels are modeled with Fisher-Snedecor F distribution.Specifically,we consider a RIS with N reflecting elements between the transmitter and the legitimate receiver to develop a smart environment and also meliorate secure communications.In this regard,we derive the closed-form expressions for the secrecy outage probability(SOP)and average secrecy capacity(ASC).We also analyze the asymptotic behaviour of the SOP and ASC by exploiting the residue approach.Monte-Carlo(MC)simulation results are provided throughout to validate the correctness of the developed analytical results,showing that considering RIS in wireless communication systems has constructive effects on the secrecy performance.展开更多
The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal ch...The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal choice for hybrid channels.However,the impact of atmospheric turbulence on transmittance fluctuations remains a significant challenge for enhancing the performance of RFI-MDI-QKD.In this paper,we apply prefixed-threshold real-time selection and advantage distillation techniques to RFI-MDI-QKD in a hybrid channels scenario.Then,we analytically derive formulas for secret key rate in hybrid channels.Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the fiber-only channel.Specifically,the result demonstrates that the maximum transmission distance can be improved by 15 km and 28 km when N=10^(12)and 10^(11).Our work not only provides a more robust key distribution protocol but also establishes a solid theoretical foundation for enhancing the performance of RFI-MDI-QKD in hybrid channels.展开更多
The unsatisfactory performance of individual inorganic and organic solid-state electrolytes has driven the development of composite solid electrolytes(CSEs)for solid-state lithium batteries(SSLBs).However,limited Li^(...The unsatisfactory performance of individual inorganic and organic solid-state electrolytes has driven the development of composite solid electrolytes(CSEs)for solid-state lithium batteries(SSLBs).However,limited Li^(+)transport across lithium-poor space charge layers(SCLs)at the filler/polymer matrix and cathode/CSE interfaces hinders ionic conductivity and compromises the electrochemical performance of SSLBs.Herein,we report a Bi_(2)O_(3)-induced lithium-rich SCL that activates interfacial Li^(+)transportation channels between Li_(0.35)La_(0.55)TiO_(3)(LLTO)filler and poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)matrix,enabling efficient Li^(+)diffusion across their interface.This design achieves a remarkable ionic conductivity of 1.63 mS cm^(-1)and a high lithium transference number of 0.80-approximately two-and three-fold improvements compared to its Bi_(2)O_(3)-free counterpart.Additionally,the dielectric properties of Bi_(2)O_(3)generate a built-in electric field,mitigating lithium-poor SCLs and facilitating Li^(+)transport at the cathode/CSE interface.As a result,the Li symmetric cells exhibit stable operation over 1000 h at 0.5 mA cm^(-2),while the full SSLBs using LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)cathode deliver exceptional electrochemical performance,retaining 86.1%capacity after 200 cycles at 0.5 C.The innovation of creating Lirich SCLs to activate the interfacial Li^(+)transportation channels at the interface provides a new avenue to achieve better CSEs and SSLBs.展开更多
Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limi...Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limit.This investigation presents,a groundbreaking Sb_(2)S_(3)photovoltaic device model that integrates perovskite within these nanogaps,and systematically examines the mechanisms for enhancing the PCE.Our findings reveal that incorporating perovskite within the nanogaps yields a 10%enhancement in optical absorption performance.Furthermore,perovskite nanogaps function as effective electron transport channels,significantly reducing the recombination of photogenerated carriers within the highly defective Sb_(2)S_(3).The dimensions and arrangement of the nanochannels play a pivotal role in determining device performance,with optimal measurements of 5 nm in width and 15 nm in spacing.Additionally,this study examines the universality of the nanochannel structure.The projected PCE of this innovative structure is an impressive 25.40%.These findings provide valuable theoretical guidance for designing high-efficiency Sb_(2)S_(3)solar cells.展开更多
The pathogenesis of the second major neurodegenerative disorder, Parkinson’s disease(PD), is closely associated with the dysfunction of potassium(K~+ ) channels. Therefore, PD is also considered to be an ion channel ...The pathogenesis of the second major neurodegenerative disorder, Parkinson’s disease(PD), is closely associated with the dysfunction of potassium(K~+ ) channels. Therefore, PD is also considered to be an ion channel disease or neuronal channelopathy. Mounting evidence has shown that K~+ channels play crucial roles in the regulations of neurotransmitter release, neuronal excitability, and cell volume. Inhibition of K~+ channels enhances the spontaneous firing frequency of nigral dopamine(DA)neurons, induces a transition from tonic firing to burst discharge, and promotes the release of DA in the striatum.Recently, three K~+ channels have been identified to protect DA neurons and to improve the motor and non-motor symptoms in PD animal models: small conductance(SK)channels, A-type K~+ channels, and KV7/KCNQ channels.In this review, we summarize the physiological and pharmacological effects of the three K~+ channels. We also describe in detail the laboratory investigations regarding K~+ channels as a potential therapeutic target for PD.展开更多
Mechanosensitive ion channels are essential for sensing and converting mechanical forces into electrical or chemical signals.These channels are widely distributed across bacteria,animals,and plants.In Arabidopsis thal...Mechanosensitive ion channels are essential for sensing and converting mechanical forces into electrical or chemical signals.These channels are widely distributed across bacteria,animals,and plants.In Arabidopsis thaliana,the OSCA family has been identified as mechanically activated ion channels that respond to osmotic stress by allowing calcium ions to enter the cell.This influx increases the cytoplasmic calcium concentration,triggering osmotic stress-induced signal transduction cascades in plants.In this study,we determined the structures of OSCA2.2 and OSCA3.1 via cryoelectron microscopy(cryo-EM).Both proteins form homodimers consisting of 11 transmembrane helices(TM1–11).The ion conduction pathway is formed by TM4–8.Despite belonging to the same family,OSCA2.2 and OSCA3.1 exhibit notable structural variations.Structural analysis revealed that both OSCA2.2 and OSCA3.1 exhibit a closed conformation.We also conducted functional studies on OSCA proteins via electrophysiological experiments and confirmed the role of key amino acids in the process of ion permeation.展开更多
[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on ...[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on new rural areas in Gannan, Jiangxi Province, summarized source, characteristics and treatment of domestic sewage in countryside, and designed channels constructed wetland for sewage treatment. [Result] The technique is proven effective in sewage treatment. After the technique was conducted for a trial run for four months, removal rates of COD, TP and TN averaged 73.07%, 73.25% and 72.36%, respectively. After contin- uous sampling for six times, effluent COD was analyzed 20-35 mg/L, TP was 0.60- 1.19 mg/L and TN was 6.88-11.21 mg/L, better than that of Standard 1B ruled by Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. [Conclusion] Thanks for low investment, channels constructed wetland can be built by trans- formation of bottom land, proving a good way for treatment of diffuse pollution source and control of water non-point pollution.展开更多
Reliable channel data helps characterize the limitations and performance boundaries of communication technologies accurately.However,channel measurement is highly costly and time-consuming,and taking actual measuremen...Reliable channel data helps characterize the limitations and performance boundaries of communication technologies accurately.However,channel measurement is highly costly and time-consuming,and taking actual measurement as the only channel data source may reduce efficiency because of the constraints of high testing difficulty and limited data volume.Although existing standard channel models can generate channel data,their authenticity and diversity cannot be guaranteed.To address this,we use deep learning methods to learn the attributes of limited measured data and propose a generative model based on generative adversarial networks to rapidly synthesize data.A software simulation platform is also established to verify that the proposed model can generate data that are statistically similar to the measured data while maintaining necessary randomness.The proposed algorithm and platform can be applied to channel data enhancement and serve channel modeling and algorithm evaluation applications with urgent needs for data.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金supported by the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230204)the National Natural Science Foundation of China(Project No.12075046).
文摘We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).
文摘Diabetes mellitus affects the heart through various mechanisms such as microvascular defects,metabolic abnormalities,autonomic dysfunction and incompatible immune response.Furthermore,it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy(DCM)in the absence of coronary artery disease.As DCM progresses it causes electrical remodeling of the heart,left ventricular dysfunction and heart failure.Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients.In recent studies,significant changes in repolarizing K+currents,Na+currents and L-type Ca^(2+)currents along with impaired Ca^(2+ )homeostasis and defective contractile function have been identified in the diabetic heart.In addition,insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients.There are many diagnostic tools and management options for DCM,but it is difficult to detect its development and to effectively prevent its progress.In this review,diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
文摘Taihu Snow (838262) is a home textile manufacturing company listed on the Beijing Stock Exchange in 2022.It is a bedding manufacturer focusing on silk products.The company was esta blished on May 18,2006,Centered around the"Taihu Snow"brand,its products cover suite products (such as pillowcases,quilt covers,sheets),quilt cores,silk scarves and otheremerging retail products.
基金Supported by Calygene Biotechnology Inc.,No.XT[2016]008@。
文摘Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder.Despite the availability of numerous pharmacotherapies,a range of adverse reactions,including hypoglycemia,gastrointestinal discomfort,and lactic acidosis,limits their patient applicability and long-term application.Therefore,it is necessary to screen novel therapeutic drugs for T2DM treatment that have high efficacy but few adverse effects.AMP-activated protein kinase(AMPK)stands out as one of the most powerful targets for T2DM treatment.It can be activated through energysensing or calcium signaling.Medications that activate AMPK through the energy-sensing mechanism exhibit remarkable potency,but they are accompanied by lactic acidosis,carrying an alarmingly high mortality rate.Interestingly,medications that activate AMPK through calcium signaling,such as gliclazide,seldom induce lactic acidosis.However,the efficacy of gliclazide is much lower than metformin.Therefore,it is necessary to explore targets that activate AMPK via calcium signaling to avoid lactic acidosis while maintaining high potency.Ion channels are the main controller of intracellular calcium flow.Specific agonists and inhibitors targeting ion channels have been reported to activate AMPK.In this review,we will summarize the structure and function of calcium-permeable ion channels and discuss the potential of targeting these calcium channels for T2DM treatment.
基金supported by the National Natural Science Foundation of China(82301052)China Postdoctoral Science Foundation(2023M732151)+3 种基金Shanxi Provincial Science and Technology Department(202303021212131)Health Commission of Shanxi Province(2022XM14)Shanxi Provincial Education Department(2022L165)Shanxi Medical University(XD2232)。
文摘The huge carrier transfer resistance caused by large-sized"nitrogen pot"severely limits the photocatalytic performance of carbon nitride(CN).This study aims to explore the selection principle of metal ion bridges for constructing dual carrier-transfer channels to delivery carriers to respectively active sites using photodegradation of phenol as the model reaction.Density functional theory(DFT)calculation was used to optimize the structure model of nitrogen vacancies(Nv,provide active sites for reduction of O_(2) and oxidation of phenol)and metal ions(Fe^(3+),Co^(2+),Ni^(2+)or Cu^(2+))co-modified CN,and screen metal ion bridges based on the three parameters including bonding state of metal ion and"nitrogen pot",electrostatic potential(ESP)distribution around the active sites,and three-electron bond length.Both calculation results and activity data show that Fe^(3+),Co^(2+)and Ni^(2+)can construct dual carrier-transfer channels to promote the degradation of phenol while Cu^(2+)cannot Ny and Fe^(3+)co-modified CN(Fe/N_(v)-CN)showed the best catalytic performance among various catalysts and was used as the model catalyst for the detailed characterization to verify the calculation results.This work provides not only the novel strategy for constructing dual carrier-transfer channels in CN,but also the crucial basis for computer simulation as a prediction tool of catalyst structure design rationality.
基金supported by Geological Disaster Patterns and Mitigation Strategies Under River-Reservoir Hydrodynamics in the Three Gorges Reservoir Fluctuation Zone(5000002024CC20004)the National Key Research and Development Program of China(2023YFC3007205)+1 种基金the National Natural Science Foundation of China(No.42271013)the West Light Foundation of the Chinese Academy of Sciences.
文摘The distribution of the sediment material storage quantity along the debris flow channels(SMSQ_DFC)can provide a foundation for runoffgenerated debris flow prediction or susceptibility assessment.Current models for estimating SMSQ_DFC do not consider the capacity of the channel cross-section to accommodate sediment materials.This accommodation condition serves as a limiting factor in determining whether the expected surplus of sediment materials can ultimately be stored.To address this issue,a mass-conservative index was used to represent the balance of deposit materials at any cross-section,considering the influx from upstream,outflux to downstream,and accommodation capacity.Based on this index,a new model for estimating SMSQ_DFC was developed and subsequently evaluated.The evaluation results show that the model meets the accuracy requirements with average error rates of 14.06%for self-validation and 14.81%for generalization ability validation.To assess its practical applications,the model was applied to the Yeniu Gully in Wenchuan County,Sichuan Province,an area with detailed field survey data.The results show that the model exhibits a commendable performance.Compared to traditional theoretical and semi-theoretical statistical models,our model is easier to use(input parameters can be obtained using Geographic Information Systems(GIS)).The modeling parameters chosen in this study have more theoretical significance than those used in existing purely statistical models,offering more effective technical support for estimating SMSQ_DFC.
基金National Key R&D Program of China,Grant/Award Number:2023YFB2503900National Natural Science Foundation of China,Grant/Award Number:12172143Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20220818100418040,JCYJ20220530160816038。
文摘Constructing silicon(Si)-based composite electrodes that possess high energy density,long cycle life,and fast charging capability simultaneously is critical for the development of high performance lithium-ion batteries for mitigating range anxiety and slow charging issues in new energy vehicles.Herein,a thick silicon/carbon composite electrode with vertically aligned channels in the thickness direction(VC-SC)is constructed by employing a bubble formation method.Both experimental characterizations and theoretical simulations confirm that the obtained vertical channel structure can effectively address the problem of sluggish ion transport caused by high tortuosity in conventional thick electrodes,conspicuously enhance reaction kinetics,reduce polarization and side reactions,mitigate stress,increase the utilization of active materials,and promote cycling stability of the thick electrode.Consequently,when paired with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),the VC-SC||NCM622 pouch type full cell(~6.0 mAh cm^(-2))exhibits significantly improved rate performance and capacity retention compared with the SC||NCM622 full cell with the conventional silicon/carbon composite electrode without channels(SC)as the anode.The assembled VC-SC||NCM622 pouch full cell with a high energy density of 490.3 Wh kg^(-1)also reveals a remarkable fast charging capability at a high current density of 2.0 mA cm^(-2),with a capacity retention of 72.0%after 500 cycles.
基金supported in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant 2022D01B184the National Natural Science Foundation of China under Grant 62301117,62131005.
文摘Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.
基金supported by the National Natural Science Foundation of China(22272150)the Major Program of Zhejiang Provincial Natural Science Foundation of China(LD22B030002)+2 种基金the Zhejiang Provincial Ten Thousand Talent Program(2021R51009)the Zhejiang Provincial Natural Science of China(LZ23B030001)the Key Science and Technology Project of Jinhua City(2022-1-083,2023-1-093).
文摘Aqueous zinc-ion batteries(ZIBs)are promising candidates for next-generation energy storage,but the problems related to Zn dendrites and side reactions severely hinder their practical applications.Herein,a self-recognition separator based on a Bi-based metal-organic framework(GF@CAU-17)is developed for ion management to achieve highly reversible Zn anodes.The GF@CAU-17 has self-recognition behavior to customize selective Zn^(2+)channels,effectively repelling SO_(4)^(2-)and H_(2)O,but facilitating Zn^(2+)conduction.The inherent properties of CAU-17 result in the repulsion of SO_(4)^(2-)ions while disrupting the hydrogen bond network among free H_(2)O molecules,restraining side reactions and by-products.Simultaneously,the zincophilic characteristic of CAU-17 expedites the desolvation of[Zn(H_(2)O)6]^(2+),leading to a self-expedited Zn^(2+)ion pumping effect that dynamically produces a steady and homogeneous Zn^(2+)ion flux,and thereby alleviates concentration polarization.Consequently,a symmetric cell based on the GF@CAU-17 separator can achieve a long lifespan of 4450 h.Moreover,the constructed Zn//GF@CAU-17//MnO_(2)cell delivers a high specific capacity of 221.8 mAh g^(-1)and 88.0%capacity retention after 2000 cycles.
基金supported by the European Union’s Horizon 2022 Research and Innovation Programme under Marie Skłodowska-Curie Grant No.10110799.
文摘In this paper,we investigate the performance of physical layer security(PLS)over reconfigurable intelligent surfaces(RIS)-aided wireless communication systems,where all fading channels are modeled with Fisher-Snedecor F distribution.Specifically,we consider a RIS with N reflecting elements between the transmitter and the legitimate receiver to develop a smart environment and also meliorate secure communications.In this regard,we derive the closed-form expressions for the secrecy outage probability(SOP)and average secrecy capacity(ASC).We also analyze the asymptotic behaviour of the SOP and ASC by exploiting the residue approach.Monte-Carlo(MC)simulation results are provided throughout to validate the correctness of the developed analytical results,showing that considering RIS in wireless communication systems has constructive effects on the secrecy performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410534)。
文摘The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal choice for hybrid channels.However,the impact of atmospheric turbulence on transmittance fluctuations remains a significant challenge for enhancing the performance of RFI-MDI-QKD.In this paper,we apply prefixed-threshold real-time selection and advantage distillation techniques to RFI-MDI-QKD in a hybrid channels scenario.Then,we analytically derive formulas for secret key rate in hybrid channels.Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the fiber-only channel.Specifically,the result demonstrates that the maximum transmission distance can be improved by 15 km and 28 km when N=10^(12)and 10^(11).Our work not only provides a more robust key distribution protocol but also establishes a solid theoretical foundation for enhancing the performance of RFI-MDI-QKD in hybrid channels.
基金financial support from the National Natural Science Foundation of China(22408239,51904193,22279135)the CAS Strategic Leading Science&Technology Program(B)(XDB1040203)+2 种基金the National Natural Science Foundation of Sichuan(2024NSFSC0987)the Sichuan Province Science and Technology Support Program(2025ZNSFSC0365)the Sichuan University Interdisciplinary Innovation Fund。
文摘The unsatisfactory performance of individual inorganic and organic solid-state electrolytes has driven the development of composite solid electrolytes(CSEs)for solid-state lithium batteries(SSLBs).However,limited Li^(+)transport across lithium-poor space charge layers(SCLs)at the filler/polymer matrix and cathode/CSE interfaces hinders ionic conductivity and compromises the electrochemical performance of SSLBs.Herein,we report a Bi_(2)O_(3)-induced lithium-rich SCL that activates interfacial Li^(+)transportation channels between Li_(0.35)La_(0.55)TiO_(3)(LLTO)filler and poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)matrix,enabling efficient Li^(+)diffusion across their interface.This design achieves a remarkable ionic conductivity of 1.63 mS cm^(-1)and a high lithium transference number of 0.80-approximately two-and three-fold improvements compared to its Bi_(2)O_(3)-free counterpart.Additionally,the dielectric properties of Bi_(2)O_(3)generate a built-in electric field,mitigating lithium-poor SCLs and facilitating Li^(+)transport at the cathode/CSE interface.As a result,the Li symmetric cells exhibit stable operation over 1000 h at 0.5 mA cm^(-2),while the full SSLBs using LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)cathode deliver exceptional electrochemical performance,retaining 86.1%capacity after 200 cycles at 0.5 C.The innovation of creating Lirich SCLs to activate the interfacial Li^(+)transportation channels at the interface provides a new avenue to achieve better CSEs and SSLBs.
基金Project(52203250)supported by the National Natural Science Foundation of ChinaProject(BS2024074)supported by the Ordos City New Energy Strategic Leading Technology Special Project,China+3 种基金Project(2025YFHH0119)supported by the Key Research and Development and Achievement Transformation Program of Inner Mongolia Autonomous Region,ChinaProject(2022ZY0187)supported by the Central Guiding Local Science and Technology Development Fund of Inner Mongolia Autonomous Region,ChinaProject(JY20220211)supported by the Basic Study Fund of Universities of Inner Mongolia Autonomous Region,ChinaProjects(JBGS-2023-005,JY20230026)supported by the Major“Unveiling”Project of Ordos City,China。
文摘Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limit.This investigation presents,a groundbreaking Sb_(2)S_(3)photovoltaic device model that integrates perovskite within these nanogaps,and systematically examines the mechanisms for enhancing the PCE.Our findings reveal that incorporating perovskite within the nanogaps yields a 10%enhancement in optical absorption performance.Furthermore,perovskite nanogaps function as effective electron transport channels,significantly reducing the recombination of photogenerated carriers within the highly defective Sb_(2)S_(3).The dimensions and arrangement of the nanochannels play a pivotal role in determining device performance,with optimal measurements of 5 nm in width and 15 nm in spacing.Additionally,this study examines the universality of the nanochannel structure.The projected PCE of this innovative structure is an impressive 25.40%.These findings provide valuable theoretical guidance for designing high-efficiency Sb_(2)S_(3)solar cells.
基金supported by the National Natural Science Foundation of China(31671054 and 81430024)the Postdoctoral Science Foundation of China(2017M610412)the Bureau of Science and Technology of Qingdao Municipality,China(17-1-1-44-jch)
文摘The pathogenesis of the second major neurodegenerative disorder, Parkinson’s disease(PD), is closely associated with the dysfunction of potassium(K~+ ) channels. Therefore, PD is also considered to be an ion channel disease or neuronal channelopathy. Mounting evidence has shown that K~+ channels play crucial roles in the regulations of neurotransmitter release, neuronal excitability, and cell volume. Inhibition of K~+ channels enhances the spontaneous firing frequency of nigral dopamine(DA)neurons, induces a transition from tonic firing to burst discharge, and promotes the release of DA in the striatum.Recently, three K~+ channels have been identified to protect DA neurons and to improve the motor and non-motor symptoms in PD animal models: small conductance(SK)channels, A-type K~+ channels, and KV7/KCNQ channels.In this review, we summarize the physiological and pharmacological effects of the three K~+ channels. We also describe in detail the laboratory investigations regarding K~+ channels as a potential therapeutic target for PD.
基金supported by the National Natural Science Foundation of China(32322041,W2412029,32321001,32471279)USTC Research Funds of the Double First-Class Initiative(YD9100002004,YD9100002020)+2 种基金Fundamental Research Funds for the Central Universities(WK9100000031)Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM(QYPY20230034)the Natural Science Foundation of Anhui Province(2408085JX005).
文摘Mechanosensitive ion channels are essential for sensing and converting mechanical forces into electrical or chemical signals.These channels are widely distributed across bacteria,animals,and plants.In Arabidopsis thaliana,the OSCA family has been identified as mechanically activated ion channels that respond to osmotic stress by allowing calcium ions to enter the cell.This influx increases the cytoplasmic calcium concentration,triggering osmotic stress-induced signal transduction cascades in plants.In this study,we determined the structures of OSCA2.2 and OSCA3.1 via cryoelectron microscopy(cryo-EM).Both proteins form homodimers consisting of 11 transmembrane helices(TM1–11).The ion conduction pathway is formed by TM4–8.Despite belonging to the same family,OSCA2.2 and OSCA3.1 exhibit notable structural variations.Structural analysis revealed that both OSCA2.2 and OSCA3.1 exhibit a closed conformation.We also conducted functional studies on OSCA proteins via electrophysiological experiments and confirmed the role of key amino acids in the process of ion permeation.
基金Supported by Project of the National Eleventh-Five Year Research Program of China(2008BAD96B04)~~
文摘[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on new rural areas in Gannan, Jiangxi Province, summarized source, characteristics and treatment of domestic sewage in countryside, and designed channels constructed wetland for sewage treatment. [Result] The technique is proven effective in sewage treatment. After the technique was conducted for a trial run for four months, removal rates of COD, TP and TN averaged 73.07%, 73.25% and 72.36%, respectively. After contin- uous sampling for six times, effluent COD was analyzed 20-35 mg/L, TP was 0.60- 1.19 mg/L and TN was 6.88-11.21 mg/L, better than that of Standard 1B ruled by Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. [Conclusion] Thanks for low investment, channels constructed wetland can be built by trans- formation of bottom land, proving a good way for treatment of diffuse pollution source and control of water non-point pollution.
基金supported by the National Key R&D Program of China under Grant No.2023YFB2904802National Natural Science Foundation of China under Grant Nos.62301022,62221001,62431003,and 62101507+1 种基金Young Elite Scientists Sponsorship Program by CAST under Grant No.2022QNRC001Program for Science&Technology R&D Plan Joint Fund of Henan Province under Grant No.225200810112。
文摘Reliable channel data helps characterize the limitations and performance boundaries of communication technologies accurately.However,channel measurement is highly costly and time-consuming,and taking actual measurement as the only channel data source may reduce efficiency because of the constraints of high testing difficulty and limited data volume.Although existing standard channel models can generate channel data,their authenticity and diversity cannot be guaranteed.To address this,we use deep learning methods to learn the attributes of limited measured data and propose a generative model based on generative adversarial networks to rapidly synthesize data.A software simulation platform is also established to verify that the proposed model can generate data that are statistically similar to the measured data while maintaining necessary randomness.The proposed algorithm and platform can be applied to channel data enhancement and serve channel modeling and algorithm evaluation applications with urgent needs for data.