The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering envi...In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering environments,so that most existing compressed sensing(CS)based techniques can harvest a very limited gain(if any)in reducing the channel estimation overhead.To address the problem,we propose the learning-based turbo message passing(LTMP)algorithm.Instead of exploiting the channel sparsity,LTMP is able to efficiently extract the channel feature via deep learning as well as to exploit the channel continuity in the frequency domain via block-wise linear modelling.More specifically,as a component of LTMP,we develop a multi-scale parallel dilated convolutional neural network(MPDCNN),which leverages frequency-space channel correlation in different scales for channel denoising.We evaluate the LTMP’s performance in MIMO-OFDM channels using the 3rd generation partnership project(3GPP)clustered delay line(CDL)channel models.Simulation results show that the proposed channel estimation method has more than 5 dB power gain than the existing algorithms when the normalized mean-square error of the channel estimation is-20 dB.The proposed algorithm also exhibits strong robustness in various environments.展开更多
The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the...The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.展开更多
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
Channel state information(CSI)is very important to sparse code multiple access combined with orthogonal frequency division multiplexing(SCMA-OFDM)systems for data detection.The main goal of this paper is to tackle the...Channel state information(CSI)is very important to sparse code multiple access combined with orthogonal frequency division multiplexing(SCMA-OFDM)systems for data detection.The main goal of this paper is to tackle the computational complexity and pilot overhead issues when estima-ting and tracking the channel frequency response of each user in uplink SCMA-OFDM systems.To this end,a new binary pilot structure is first designed to realize the initial channel estimation with significantly reduced computational complexity.Then,a channel tracking method is proposed to update the channel estimation in time-varying channels,which exploits a modified least mean square(LMS)technique with the feedback from the detector.Simulation results show that the pro-posed pilot structure can provide accurate channel estimation results.Moreover,the average bit error rate(BER)performance of the modified LMS algorithm can approach that of a detector with perfect CSI within 2 dB at the normalized Doppler frequency up to 6×10^(-6).展开更多
To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave(mmWave)massive Multiple-Input Multiple-Output(MIMO)systems in Internet of Vehicles(IoV)scenarios,the paper prop...To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave(mmWave)massive Multiple-Input Multiple-Output(MIMO)systems in Internet of Vehicles(IoV)scenarios,the paper proposes a deep learning(DL)algorithm,Squeeze-and-Excitation Attention Residual Network(SEARNet),which integrates Squeeze-and-Excitation Attention(SEAttention)mechanism and residual module.Specifically,SEARNet considers the channel information as an image matrix,and embeds a SEAttention module in residual module to construct the SEAttention-Residual block.Through a data-driven approach,SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism,thereby reducing noise interference and estimating the channel in an accurate and efficient manner.The simulation results show that compared to two traditional and two DL channel estimation algorithms,the proposed SEARNet can achieve a maximum reduction in normalized mean square error(NMSE)of 97.66%and 84.49%at SNR of-10 dB,78.18%at SNR of 5 dB,and 43.51%at SNR of 10 dB,respectively.展开更多
This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specificall...This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specifically,this paper focuses on both channel modelling and receiver design for interference estimation and mitigation.We propose a delay-calibrated block-wise linear model,which extracts the delay of the dominant tap of each interference as a key parameter and approximates the residual channel coefficients by the recently developed blockwise linear model.Based on the delay-calibrated block-wise linear model and the angle-domain channel sparsity,we further conceive a message passing algorithm to solve the channel estimation problem.Numerical results demonstrate the superior performance of the proposed algorithm over the state-of-the-art algorithms.展开更多
Integrated sensing and communication(ISAC),assisted by reconfigurable intelligent surface(RIS)has emerged as a breakthrough technology to improve the capacity and reliability of 6G wireless network.However,a significa...Integrated sensing and communication(ISAC),assisted by reconfigurable intelligent surface(RIS)has emerged as a breakthrough technology to improve the capacity and reliability of 6G wireless network.However,a significant challenge in RIS-ISAC systems is the acquisition of channel state information(CSI),largely due to co-channel interference,which hinders meeting the required reliability standards.To address this issue,a minimax-concave penalty(MCP)-based CSI refinement scheme is proposed.This approach utilizes an element-grouping strategy to jointly estimate the ISAC channel and the RIS phase shift matrix.Unlike previous methods,our scheme exploits the inherent sparsity in RIS-assisted ISAC channels to reduce training overhead,and the near-optimal solution is derived for our studied RIS-ISAC scheme.The effectiveness of the element-grouping strategy is validated through simulation experiments,demonstrating superior channel estimation results when compared to existing benchmarks.展开更多
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch...The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols w...This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the...In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the recei...A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.展开更多
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1804800.
文摘In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering environments,so that most existing compressed sensing(CS)based techniques can harvest a very limited gain(if any)in reducing the channel estimation overhead.To address the problem,we propose the learning-based turbo message passing(LTMP)algorithm.Instead of exploiting the channel sparsity,LTMP is able to efficiently extract the channel feature via deep learning as well as to exploit the channel continuity in the frequency domain via block-wise linear modelling.More specifically,as a component of LTMP,we develop a multi-scale parallel dilated convolutional neural network(MPDCNN),which leverages frequency-space channel correlation in different scales for channel denoising.We evaluate the LTMP’s performance in MIMO-OFDM channels using the 3rd generation partnership project(3GPP)clustered delay line(CDL)channel models.Simulation results show that the proposed channel estimation method has more than 5 dB power gain than the existing algorithms when the normalized mean-square error of the channel estimation is-20 dB.The proposed algorithm also exhibits strong robustness in various environments.
基金funded in part by the National Natural Science Foundation of China(62261024 and U2001213)in part by National Key Research and Development Project(2020YFB1807204)+2 种基金in part by Science and Technology Project of Education Department of Jiangxi Province(GJJ214606 and GJJ2205201)in part by Key Laboratory of Universal Wireless Communications(BUPT),Ministry of Education,P.R.China(KFKT-2022101)in part by the Jiangxi Provincial Natural Science Foundation(20212BAB212001)。
文摘The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
基金Supported by the National Natural Science Foundation of China(No.62171135)the Natural Science Foundation of Fujian Province(No.2023J01399)。
文摘Channel state information(CSI)is very important to sparse code multiple access combined with orthogonal frequency division multiplexing(SCMA-OFDM)systems for data detection.The main goal of this paper is to tackle the computational complexity and pilot overhead issues when estima-ting and tracking the channel frequency response of each user in uplink SCMA-OFDM systems.To this end,a new binary pilot structure is first designed to realize the initial channel estimation with significantly reduced computational complexity.Then,a channel tracking method is proposed to update the channel estimation in time-varying channels,which exploits a modified least mean square(LMS)technique with the feedback from the detector.Simulation results show that the pro-posed pilot structure can provide accurate channel estimation results.Moreover,the average bit error rate(BER)performance of the modified LMS algorithm can approach that of a detector with perfect CSI within 2 dB at the normalized Doppler frequency up to 6×10^(-6).
基金supported in part by the National Natural Science Foundation of China under Grants U2001213 and 62261024in part by National Key Research and Development Project under Grant 2020YFB1807204in part by Key Laboratory of Universal Wireless Communications(BUPT),Ministry of Education under Grant KFKT2022101.
文摘To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave(mmWave)massive Multiple-Input Multiple-Output(MIMO)systems in Internet of Vehicles(IoV)scenarios,the paper proposes a deep learning(DL)algorithm,Squeeze-and-Excitation Attention Residual Network(SEARNet),which integrates Squeeze-and-Excitation Attention(SEAttention)mechanism and residual module.Specifically,SEARNet considers the channel information as an image matrix,and embeds a SEAttention module in residual module to construct the SEAttention-Residual block.Through a data-driven approach,SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism,thereby reducing noise interference and estimating the channel in an accurate and efficient manner.The simulation results show that compared to two traditional and two DL channel estimation algorithms,the proposed SEARNet can achieve a maximum reduction in normalized mean square error(NMSE)of 97.66%and 84.49%at SNR of-10 dB,78.18%at SNR of 5 dB,and 43.51%at SNR of 10 dB,respectively.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1804800。
文摘This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specifically,this paper focuses on both channel modelling and receiver design for interference estimation and mitigation.We propose a delay-calibrated block-wise linear model,which extracts the delay of the dominant tap of each interference as a key parameter and approximates the residual channel coefficients by the recently developed blockwise linear model.Based on the delay-calibrated block-wise linear model and the angle-domain channel sparsity,we further conceive a message passing algorithm to solve the channel estimation problem.Numerical results demonstrate the superior performance of the proposed algorithm over the state-of-the-art algorithms.
基金supported in part by the National Natural Science Foundation of China under Grant 62001171in part by the Natural Science Foundation of Guangdong Province under Grant 2024A1515011172in part by the Henan Science and Technology Research and Development Program Joint Fund under Grant 235200810049。
文摘Integrated sensing and communication(ISAC),assisted by reconfigurable intelligent surface(RIS)has emerged as a breakthrough technology to improve the capacity and reliability of 6G wireless network.However,a significant challenge in RIS-ISAC systems is the acquisition of channel state information(CSI),largely due to co-channel interference,which hinders meeting the required reliability standards.To address this issue,a minimax-concave penalty(MCP)-based CSI refinement scheme is proposed.This approach utilizes an element-grouping strategy to jointly estimate the ISAC channel and the RIS phase shift matrix.Unlike previous methods,our scheme exploits the inherent sparsity in RIS-assisted ISAC channels to reduce training overhead,and the near-optimal solution is derived for our studied RIS-ISAC scheme.The effectiveness of the element-grouping strategy is validated through simulation experiments,demonstrating superior channel estimation results when compared to existing benchmarks.
基金supported by the National Key Scientific Instrument and Equipment Development Project(61827801).
文摘The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
基金This research project was funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(43-PRFA-P-58).
文摘This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 20720200092the National Natural Science Foundation of China under Grant 62171394,U21A20444,61771152,62071402+2 种基金the Sustainable Funding of the Key Laboratory of Underwater Acoustic Technology under Grant JCKYS2022604SSJS001Key Laboratory of Universal Wireless Communications(BUPT)Ministry of Education,P.R.China under Grant KFKT-2022103.
文摘In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
基金The Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2013D02)the Fundamental Research Funds for the Central Universities(No.30920130122004)the National Natural Science Foundation of China(No.61271230,61472190)
文摘A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.