To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is pro...To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.展开更多
This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities o...This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.展开更多
A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for...A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.展开更多
A multiplier-simplified adaptive channel equalization scheme is proposed for short-reach digital coherent optical transmission.The data processing is based on hardware-efficient logic,such as a shifter and adder unit,...A multiplier-simplified adaptive channel equalization scheme is proposed for short-reach digital coherent optical transmission.The data processing is based on hardware-efficient logic,such as a shifter and adder unit,rather than a conventional multiplier.Through the offline experiment,the performances of 64 Gbaud polarization division multiplexed(PDM)quadrature phase shift keying(QPSK),16-quadrature amplitude modulation(16QAM),and 64-quadrature amplitude modulation(64QAM)are verified.Typically,in 10.8 km standard single-mode fiber transmission,the 64 Gbaud PDM-16QAM performance penalty can be limited to less than 0.2 dB by the proposed adaptive channel equalization,compared with the conventional method.Furthermore,based on our 10 Gb/s real-time coherent optical transceiver,we demonstrate the feasibility of a field-programmable gate array.Using a reasonable number of logical units,the performance of the proposed scheme is shown to be close to that of the conventional method.展开更多
Aiming at the severe inter-symbol interference and high bit error rate in short-wave fast time-varying channels,this paper designs a short-wave channel blind equalizer based on Convolution Neural Network(CNN),and anal...Aiming at the severe inter-symbol interference and high bit error rate in short-wave fast time-varying channels,this paper designs a short-wave channel blind equalizer based on Convolution Neural Network(CNN),and analyzes the influence of parameters in CNN structure on channel equalization,such as the number of convolution layers,the depth of convolution layer and the size of the convolution kernel layer.By simulating two typical short-wave time-varying channel,Rayleigh flat fading and frequency selective fading channels,we have the following results:1)Compared with the Recurrent Neural Network(RNN)structure equalizer,the CNN has higher accuracy during the training process,the convergence speed is faster,and the stability after convergence is higher.2)Under the condition of simulation,the CNN-based short-wave channel blind equalizer designed in this paper can effectively extract input signal when using 2×3×3 convolution kernel size and 2-layer convolutional layer.The characteristics of the classification layer improve the equalization performance while reducing the complexity of CNN structure.3)For the short-wave channel,the error rate of Convolution Neural Network Equalizer(CNNE)is lower than that of Recurrent Neural Network Equalizer(RNNE)under the same SNR.展开更多
To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 ...To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 and 4 passes.The corrosion behavior and mechanical properties of alloys were investigated by optical microscopy(OM),scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),electrochemical tests,immersion tests and tensile tests.The results showed that mechanical properties improved after ECAP 1 pass;however,the corrosion resistance deteriorated due to high-density dislocations and fragmented secondary phases by ECAP.In contrast,synchronous improvement in the mechanical properties and corrosion resistance was achieved though grain refinement after ECAP 4 passes;fine grains led to a significant improvement in the yield strength,ultimate tensile strength,elongation,and corrosion rate of 103 MPa,223 MPa,30.5%,and 1.5843 mm/a,respectively.The enhanced corrosion resistance was attributed to the formation of dense corrosion product films by finer grains and the barrier effect by high-density grain boundaries.These results indicated that Mg-1Zn-1Ca alloy has a promising potential for application in biomedical materials.展开更多
In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is ...Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.展开更多
To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied....To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.展开更多
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch...In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic micros...Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic microscopy (SEM) and transmission electronic microscopy (TEM). The density, hardness and room temperature compression properties of the deformed samples were measured. The experiment results show that ECAPT is an effective method of consolidating powders at relatively low temperatures. Pure A1 particles are successfully consolidated into dense bulk material after 4 passes of ECAPT at 200 ℃. The consolidated material possesses fine grain structure and excellent mechanical properties. The refinement and consolidation mechanisms were analyzed. ECAPT is a promising method to produce the high-performance bulk materials from particles.展开更多
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each...An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.展开更多
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r...Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.展开更多
The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron m...The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.展开更多
The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ...The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.展开更多
The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec...The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.展开更多
Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment te...Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment temperature, the a phase solid grain size of processedMg-Al-Zn alloy by ECAE increases firstly due to coarsening of a phase solid grains, then decreasesdue to melting of a phase solid grains. With the increase of extrusion passes during ECAE, the aphase solid grain size in the following semi-solid isothermal treatment decreases. The a phase solidgrain size of processed Mg-Al-Zn alloy by ECAE under route B_C is the smallest, while the a phasesolid grain size of processed material by ECAE under route A is the largest. The primary mechanismof spheroid formation depends on the melting of recrystallizing boundaries and diffusion of soluteatoms in the semi-solid state.展开更多
Equal channel angular pressing is an effective technique to control the texture and microstructure of metals and alloys. Texture and microstructure of an Al-7075 alloy subjected to repetitive equal channel angular pre...Equal channel angular pressing is an effective technique to control the texture and microstructure of metals and alloys. Texture and microstructure of an Al-7075 alloy subjected to repetitive equal channel angular pressing through a 90° die were evaluated by X-ray diffractometer and orientation imaging microscopy. It is observed that processing through different routes leads to different types of textures, in both qualitative and quantitative senses. The texture calculation by Labotex software reveals that texture strengthens after the first pass and weakens by progressing ECAP process up to 4 passes. Microstructure investigations show that after 4 passes of equal channel angular pressing via routes BC and A, very fine grains with average grain size of about 700 nm and 1 μm appear, respectively, and most of the grains evolve into arrays of high angle boundaries. The effects of covering the Al-7075 billets with copper tube on texture and microstructure were also studied.展开更多
基金Supported by National Natural Science Foundation of China (No. 60872123)Joint Fund of National Natural Science Foundation of China and Guangdong Provincial Natural Science Foundation (No. U0835001)Fundamental Research Funds for Central Universities (No. 2011ZM0033)
文摘To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.
文摘This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.
基金the National Natural Science Foundation of China (60072001)
文摘A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.
基金supported by the National Natural Science Foundation of China(Nos.62205166 and U21A20454)the Key Research and Development Project in Hubei Province(No.2022BAA002)+1 种基金the Major Key Project of PCL,the Natural Science Foundation of Hubei Province(No.2022CFB339)the Young Top-Notch Talent Cultivation Program of Hubei Province。
文摘A multiplier-simplified adaptive channel equalization scheme is proposed for short-reach digital coherent optical transmission.The data processing is based on hardware-efficient logic,such as a shifter and adder unit,rather than a conventional multiplier.Through the offline experiment,the performances of 64 Gbaud polarization division multiplexed(PDM)quadrature phase shift keying(QPSK),16-quadrature amplitude modulation(16QAM),and 64-quadrature amplitude modulation(64QAM)are verified.Typically,in 10.8 km standard single-mode fiber transmission,the 64 Gbaud PDM-16QAM performance penalty can be limited to less than 0.2 dB by the proposed adaptive channel equalization,compared with the conventional method.Furthermore,based on our 10 Gb/s real-time coherent optical transceiver,we demonstrate the feasibility of a field-programmable gate array.Using a reasonable number of logical units,the performance of the proposed scheme is shown to be close to that of the conventional method.
基金the National Natural Science Foundation of China(61671333)。
文摘Aiming at the severe inter-symbol interference and high bit error rate in short-wave fast time-varying channels,this paper designs a short-wave channel blind equalizer based on Convolution Neural Network(CNN),and analyzes the influence of parameters in CNN structure on channel equalization,such as the number of convolution layers,the depth of convolution layer and the size of the convolution kernel layer.By simulating two typical short-wave time-varying channel,Rayleigh flat fading and frequency selective fading channels,we have the following results:1)Compared with the Recurrent Neural Network(RNN)structure equalizer,the CNN has higher accuracy during the training process,the convergence speed is faster,and the stability after convergence is higher.2)Under the condition of simulation,the CNN-based short-wave channel blind equalizer designed in this paper can effectively extract input signal when using 2×3×3 convolution kernel size and 2-layer convolutional layer.The characteristics of the classification layer improve the equalization performance while reducing the complexity of CNN structure.3)For the short-wave channel,the error rate of Convolution Neural Network Equalizer(CNNE)is lower than that of Recurrent Neural Network Equalizer(RNNE)under the same SNR.
基金financially supported by the National Natural Science Foundation of China(No.52374395)the Natural Science Foundation of Shanxi Province,China(Nos.20210302123135,202303021221143)+5 种基金the Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province,China(Nos.202104021301022,202204021301009)the Central Government Guided Local Science and Technology Development Projects,China(No.YDZJSX20231B003)the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)the National Research Foundation(NRF)grant funded by the Ministry of Science and ICT of Korea through the Research Institute of Advanced Materials(No.2015R1A2A1A01006795)the China Postdoctoral Science Foundation(No.2022M710541)the Research Project supported by Shanxi Scholarship Council of China(No.2022-038)。
文摘To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 and 4 passes.The corrosion behavior and mechanical properties of alloys were investigated by optical microscopy(OM),scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),electrochemical tests,immersion tests and tensile tests.The results showed that mechanical properties improved after ECAP 1 pass;however,the corrosion resistance deteriorated due to high-density dislocations and fragmented secondary phases by ECAP.In contrast,synchronous improvement in the mechanical properties and corrosion resistance was achieved though grain refinement after ECAP 4 passes;fine grains led to a significant improvement in the yield strength,ultimate tensile strength,elongation,and corrosion rate of 103 MPa,223 MPa,30.5%,and 1.5843 mm/a,respectively.The enhanced corrosion resistance was attributed to the formation of dense corrosion product films by finer grains and the barrier effect by high-density grain boundaries.These results indicated that Mg-1Zn-1Ca alloy has a promising potential for application in biomedical materials.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
文摘Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.
基金Project(B08040)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2009ZX04005-031-11)supported by the National Science and Technology Special Program,China
文摘To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.
基金Project(51401177)supported by the National Natural Science Foundation of ChinaProject(13KJD430005)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(JSKLEDC201309)supported by Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control,China
文摘In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
基金Project(50875072)supported by the National Natural Science Foundation of ChinaProject(121053)supported by Fok Ying Tong Education FoundationProject(20100111110003)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic microscopy (SEM) and transmission electronic microscopy (TEM). The density, hardness and room temperature compression properties of the deformed samples were measured. The experiment results show that ECAPT is an effective method of consolidating powders at relatively low temperatures. Pure A1 particles are successfully consolidated into dense bulk material after 4 passes of ECAPT at 200 ℃. The consolidated material possesses fine grain structure and excellent mechanical properties. The refinement and consolidation mechanisms were analyzed. ECAPT is a promising method to produce the high-performance bulk materials from particles.
基金Project(50871040)supported by the National Natural Science Foundation of ChinaProject(NCET-06-0741)supported by the Program for New Century Excellent Talents of China
文摘An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.
基金Projects(50871040,51271204) supported by the National Natural Science Foundation of ChinaProject(2012CB619500) supported by the National Basic Research Program of ChinaProject(NCET-06-0741) supported by the Program for New Century Excellent Talents, China
文摘Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.
基金Project(51001035)supported by the National Natural Science Foundation of ChinaProject(LBH-Q14035)supported by the Postdoctoral Funds for Scientific Research Initiation of Heilongjiang Province,ChinaProject(HEUCF20151002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.
基金The authors wish to highly acknowledge Prof.L.M.Wang of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,for his valuable suggestions and discussions.Thanks to the financial aid from the National Science&Technology Pillar Program(Grant No.2012BAE01B04)the National Natural Science Foundation of China(Grant No.51401200)the Natural Science Foundation of Jilin Province(Grant No.20140520099JH).
文摘The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.
基金supported by the National Natural Science Foundation of China(Nos.51401172 and 51601003)Sichuan Science and Technology Program(2019YJ0238)+1 种基金Fundamental Research Funds for the Central Universities(2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University。
文摘The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.
基金Projects(50475029,50605015) supported by the National Natural Science Foundation of China
文摘Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment temperature, the a phase solid grain size of processedMg-Al-Zn alloy by ECAE increases firstly due to coarsening of a phase solid grains, then decreasesdue to melting of a phase solid grains. With the increase of extrusion passes during ECAE, the aphase solid grain size in the following semi-solid isothermal treatment decreases. The a phase solidgrain size of processed Mg-Al-Zn alloy by ECAE under route B_C is the smallest, while the a phasesolid grain size of processed material by ECAE under route A is the largest. The primary mechanismof spheroid formation depends on the melting of recrystallizing boundaries and diffusion of soluteatoms in the semi-solid state.
文摘Equal channel angular pressing is an effective technique to control the texture and microstructure of metals and alloys. Texture and microstructure of an Al-7075 alloy subjected to repetitive equal channel angular pressing through a 90° die were evaluated by X-ray diffractometer and orientation imaging microscopy. It is observed that processing through different routes leads to different types of textures, in both qualitative and quantitative senses. The texture calculation by Labotex software reveals that texture strengthens after the first pass and weakens by progressing ECAP process up to 4 passes. Microstructure investigations show that after 4 passes of equal channel angular pressing via routes BC and A, very fine grains with average grain size of about 700 nm and 1 μm appear, respectively, and most of the grains evolve into arrays of high angle boundaries. The effects of covering the Al-7075 billets with copper tube on texture and microstructure were also studied.