期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
1
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
2
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 channel attention SENET model engine misfire fault fault detection
在线阅读 下载PDF
Hypersonic glide vehicle trajectory prediction based on frequency enhanced channel attention and light sampling-oriented MLP network
3
作者 Yuepeng Cai Xuebin Zhuang 《Defence Technology(防务技术)》 2025年第4期199-212,共14页
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv... Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well. 展开更多
关键词 Hypersonic glide vehicle Trajectory prediction Frequency enhanced channel attention Light sampling-oriented MLP network
在线阅读 下载PDF
Ultrashort-Term Power Prediction of Distributed Photovoltaic Based on Variational Mode Decomposition and Channel Attention Mechanism
4
作者 Zhebin Sun Wei Wang +6 位作者 Mingxuan Du Tao Liang Yang Liu Hailong Fan Cuiping Li Xingxu Zhu Junhui Li 《Energy Engineering》 2025年第6期2155-2175,共21页
Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variat... Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid. 展开更多
关键词 Distributed photovoltaic power channel attention mechanism convolutional neural network bidirectional long short-term memory network
在线阅读 下载PDF
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
5
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 Intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel attention network security
在线阅读 下载PDF
Facial Expression Recognition Based on Multi-Channel Attention Residual Network 被引量:3
6
作者 Tongping Shen Huanqing Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期539-560,共22页
For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The mi... For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples.The designed MCA module is integrated into the ResNet18 backbone network.The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights,and the multi-head structure focuses more on the local features of the pictures,which improves the efficiency of facial expression recognition.Experimental results demonstrate that the model proposed in this paper achieves excellent recognition results in Fer2013,CK+and Jaffe datasets,with accuracy rates of 72.7%,98.8%and 93.33%,respectively. 展开更多
关键词 Facial expression recognition channel attention ResNet18 DATASET
在线阅读 下载PDF
A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism 被引量:2
7
作者 Jiabin Wang Kai Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期345-363,共19页
In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may b... In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition. 展开更多
关键词 EMG signal capture channel attention mechanism convolutional neural network MULTI-VIEW gait recognition gait characteristics BACK-PROPAGATION
在线阅读 下载PDF
Channel attention based wavelet cascaded network for image super-resolution
8
作者 CHEN Jian HUANG Detian HUANG Weiqin 《High Technology Letters》 EI CAS 2022年第2期197-207,共11页
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o... Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics. 展开更多
关键词 image super-resolution(SR) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
在线阅读 下载PDF
Feature pyramid attention network for audio-visual scene classification
9
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
Reference Image Guided Super-Resolution via Progressive Channel Attention Networks 被引量:2
10
作者 Huan-Jing Yue Sheng Shen +2 位作者 Jing-Yu Yang Hao-Feng Hu Yan-Fang Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期551-563,共13页
In recent years,the convolutional neural networks(CNNs)for single image super-resolution(SISR)are becoming more and more complex,and it is more challenging to improve the SISR performance.In contrast,the reference ima... In recent years,the convolutional neural networks(CNNs)for single image super-resolution(SISR)are becoming more and more complex,and it is more challenging to improve the SISR performance.In contrast,the reference image guided super-resolution(RefSR)is an effective strategy to boost the SR(super-resolution)performance.In RefSR,the introduced high-resolution(HR)references can facilitate the high-frequency residual prediction process.According to the best of our knowledge,the existing CNN-based RefSR methods treat the features from the references and the low-resolution(LR)input equally by simply concatenating them together.However,the HR references and the LR inputs contribute differently to the final SR results.Therefore,we propose a progressive channel attention network(PCANet)for RefSR.There are two technical contributions in this paper.First,we propose a novel channel attention module(CAM),which estimates the channel weighting parameter by weightedly averaging the spatial features instead of using global averaging.Second,considering that the residual prediction process can be improved when the LR input is enriched with more details,we perform super-resolution progressively,which can take advantage of the reference images in multi-scales.Extensive quantitative and qualitative evaluations on three benchmark datasets,which represent three typical scenarios for RefSR,demonstrate that our method is superior to the state-of-the-art SISR and RefSR methods in terms of PSNR(Peak Signal-to-Noise Ratio)and SSIM(Structural Similarity). 展开更多
关键词 reference-based super resolution channel attention progressive channel attention network(PCANet)
原文传递
Single Image Deraining Using Residual Channel Attention Networks
11
作者 王迪 潘金山 唐金辉 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第2期439-454,共16页
Image deraining is a highly ill-posed problem.Although significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restorat... Image deraining is a highly ill-posed problem.Although significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and generalization to real rain images.In this paper,we propose a deep residual channel attention network(DeRCAN)for deraining.The channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more accurate estimations of structures and details for image deraining.In addition,we further propose an unsupervised learning approach to better solve real rain images based on the proposed network.Extensive qualitative and quantitative evaluation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against state-of-the-art methods. 展开更多
关键词 deraining deep convolutional neural network(DCNN) channel attention detail restoration unsupervised finetuning
原文传递
MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network
12
作者 Hina Bhanbhro Yew Kwang Hooi +2 位作者 Mohammad Nordin Bin Zakaria Worapan Kusakunniran Zaira Hassan Amur 《Computers, Materials & Continua》 SCIE EI 2024年第11期2243-2259,共17页
Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susce... Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susceptible to missed detection due to background noise.Additionally,small object information is affected due to the downsampling operations.Deep learning-based detection methods have been utilized to address the challenge posed by small objects.In this work,we propose a novel method,the Multi-Convolutional Block Attention Network(MCBAN),to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process.The multi-convolutional attention block(MCAB);channel attention and spatial attention module(SAM)that make up MCAB,have been crafted to accomplish small object detection with higher precision.We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)and Pattern Analysis,Statical Modeling and Computational Learning(PASCAL)Visual Object Classes(VOC)datasets and have followed a step-wise process to analyze the results.These experiment results demonstrate that significant gains in performance are achieved,such as 97.75%for KITTI and 88.97%for PASCAL VOC.The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches. 展开更多
关键词 Multi-convolutional channel attention spatial attention YOLO
在线阅读 下载PDF
Deep neural network based on multi-level wavelet and attention for structured illumination microscopy
13
作者 Yanwei Zhang Song Lang +2 位作者 Xuan Cao Hanqing Zheng Yan Gong 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期12-23,共12页
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know... Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems. 展开更多
关键词 Super-resolution reconstruction multi-level wavelet packet transform residual channel attention selective kernel attention
原文传递
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
14
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
在线阅读 下载PDF
An Assisted Diagnosis of Alzheimer’s Disease Incorporating Attention Mechanisms Med-3D Transfer Modeling
15
作者 Yanmei Li Jinghong Tang +3 位作者 Weiwu Ding Jian Luo Naveed Ahmad Rajesh Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第1期713-733,共21页
Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin... Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD. 展开更多
关键词 Alzheimer’s disease channel attention Med-3D hot update
暂未订购
CP-Net:Channel Attention and Pixel Attention Network for Single Image Dehazing
16
作者 Shunan Gao Jinghua Zhu Yan Yang 《国际计算机前沿大会会议论文集》 2020年第1期577-590,共14页
An end-to-end channel attention and pixel attention network(CP-Net)is proposed to produce dehazed image directly in the paper.The CP-Net structure contains three critical components.Firstly,the double attention(DA)mod... An end-to-end channel attention and pixel attention network(CP-Net)is proposed to produce dehazed image directly in the paper.The CP-Net structure contains three critical components.Firstly,the double attention(DA)module consisting of channel attention(CA)and pixel attention(PA).Different channel features contain different levels of important information,and CA can give more weight to relevant information,so the network can learn more useful information.Meanwhile,haze is unevenly distributed on different pixels,and PA is able to filter out haze with varying weights for different pixels.It sums the outputs of the two attention modules to improve further feature representation which contributes to better dehazing result.Secondly,local residual learning and DA module constitute another important component,namely basic block structure.Local residual learning can transfer the feature information in the shallow part of the network to the deep part of the network through multiple local residual connections and enhance the expressive ability of CP-Net.Thirdly,CP-Net mainly uses its core component,DA module,to automatically assign different weights to different features to achieve satisfactory dehazing effect.The experiment results on synthetic datasets and real hazy images indicate that many state-of-the-art single image dehazing methods have been surpassed by the CP-Net both quantitatively and qualitatively. 展开更多
关键词 Image dehazing channel attention and pixel attention Residual learning
原文传递
复杂交通场景下的目标检测方法
17
作者 濮志远 罗素云 《信息与控制》 北大核心 2025年第4期632-643,共12页
针对复杂交通场景目标检测方法的不足,特别是对小目标和遮挡目标的漏检及多尺度目标检测和模型鲁棒性方面的不足,提出了一种改进后的YOLOv8s-SRCEM(You Only Look Once version 8 small model with Small object detection head,Residua... 针对复杂交通场景目标检测方法的不足,特别是对小目标和遮挡目标的漏检及多尺度目标检测和模型鲁棒性方面的不足,提出了一种改进后的YOLOv8s-SRCEM(You Only Look Once version 8 small model with Small object detection head,Residual Convolutional block attention module,Efficient channel attention module,and Multi-scale block)模型:引入小目标检测头,使模型能够更加敏感地捕捉小尺寸目标,提高对小目标的检测能力;在小目标检测头上集成Res-CBAM(Residual Convolutional Block Attention Module),进一步提高特征学习的显著性;在骨干网络中加入ECA(Efficient Channel Attention)模块,强化模型对特征通道重要性的关注,提升特征选择和模型的鲁棒性;将原始的SPPF(Spatial Pyramid Pooling-Fast)模块替换为MS-Block(Multi-Scale Block),模型在不同尺度上的特征捕捉和融合能力得到增强。在KITTI数据集上,改进后的模型相比于YOLOv8s模型mAP(mean Average Precision)值提高了6.6%。实验结果表明,多种改进方案的组合使模型在复杂交通场景中的检测性能得到全面提升。 展开更多
关键词 复杂场景 小目标检测 MS-Block(Multi-Scale Block) ECA(Efficient channel attention) 注意力模块
原文传递
Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation
18
作者 DUO Lin XU Boyu +1 位作者 REN Yong YANG Xin 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期590-599,共10页
In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and de... In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and deep learning-based CS-MRI methods.In theory,enhancing geometric texture details in linear reconstruction is possible.First,the optimization problem is decomposed into two problems:linear approximation and geometric compensation.Aimed at the problem of image linear approximation,the data consistency module is used to deal with it.Since the processing process will lose texture details,a neural network layer that explicitly combines image and frequency feature representation is proposed,which is named butterfly dilated geometric distillation network.The network introduces the idea of butterfly operation,skillfully integrates the features of image domain and frequency domain,and avoids the loss of texture details when extracting features in a single domain.Finally,a channel feature fusion module is designed by combining channel attention mechanism and dilated convolution.The attention of the channel makes the final output feature map focus on the more important part,thus improving the feature representation ability.The dilated convolution enlarges the receptive field,thereby obtaining more dense image feature data.The experimental results show that the peak signal-to-noise ratio of the network is 5.43 dB,5.24 dB and 3.89 dB higher than that of ISTA-Net+,FISTA and DGDN networks on the brain data set with a Cartesian sampling mask CS ratio of 10%. 展开更多
关键词 butterfly geometric distillation dilation convolution channel attention image reconstruction
原文传递
An attention-based prototypical network for forest fire smoke few-shot detection 被引量:3
19
作者 Tingting Li Haowei Zhu +1 位作者 Chunhe Hu Junguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1493-1504,共12页
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn... Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches. 展开更多
关键词 Forest fire smoke detection Few-shot learning channel attention module Spatial attention module Prototypical network
在线阅读 下载PDF
A hybrid attention deep learning network for refined segmentation of cracks from shield tunnel lining images 被引量:3
20
作者 Shuai Zhao Guokai Zhang +2 位作者 Dongming Zhang Daoyuan Tan Hongwei Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3105-3117,共13页
This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel an... This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice. 展开更多
关键词 Crack segmentation Crack disjoint problem U-net channel attention Position attention
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部