In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly explo...In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly exploited in the fields of climate change,climate variability,climate projection,and beyond.This paper provides an overview of LENS in climate systems.It delves into its definition,initialization,significance,and scientific concerns.Additionally,its development history and relevant theories,methods,and primary fields of application are also reviewed.Conclusions obtained from single-model LENS can be more robust compared with those from ensemble simulations with smaller numbers of members.The interactions among model biases,forced responses,and internal variabilities,which serve as the added value in LENS,are highlighted.Finally,we put forward the future trajectory of LENS with climate or Earth system models(ESMs).Super-large ensemble simulation,high-resolution LENS,LENS employing ESMs,and combining LENS with artificial intelligence,will greatly promote the study of climate and related applications.展开更多
Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global L...Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.展开更多
This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrologic...This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrological simulation and analyzing the factors affecting runoff volume.Runoff volume and runoff depth were simulated using the VIC model and its performance was evaluated.Meanwhile,the factors affecting runoff volume were analyzed using Spearman correlation.The following model sensitivity parameters were obtained based on the China Natural Runoff Grid Point Dataset(CNRD v1.0):The variable infiltration curve parameter was 0.3,the Dsmax fraction where non-linear baseflow begins was 0.02,the maximum baseflow velocity was 15 mm/d,the maximum soil moisture where non-linear baseflow occurred was 0.7,the second soil moisture layer thickness was 0.3,and the thickness of the third soil moisture layer was 1.5.The surface runoff values in the Nyang River basin were similar in the first and fourth quarters(1.05–2.27 mm and 2.38–4.77 mm,respectively),and the surface runoff values were similar in the second and third quarters when the surface runoff was greater(23.46–52.20 mm and 60.59–85.63 mm,respectively).Watershed area,temperature,and precipitation significantly influenced the amount of runoff from the Nyang River.The applicability of the model to the Nyang River basin was confirmed using two different rate models.In some areas,precipitation and temperature did not have a dominating influence on runoff.Although the VIC model has significant advantages in runoff simulation,it requires a wealth of meteorological,soil,and hydrological data that may be difficult to obtain in some areas.展开更多
Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps ...Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps to formulate differential scientific carbon mitigation policies.In this regard,this study constructs an integrated model of SD-PLUS-InVEST to simulate LUCs and CS changes under multi-climate change-based scenarios(SSP126,SSP245,SSP585)for three major urban agglomerations(3UAs)in the Yangtze River Economic Belt.Results demonstrate that land use demand in the 3UAs changes considerably in each scenario.Construction land in the 3UAs remains the most important growth category for the coming decade,but its increase varies in different scenarios.CS in the Yangtze River Delta Urban Agglomeration(YRDUA)and Mid-Yangtze River Urban Agglomeration(MYRUA)shows a similar downward trend under different scenarios,with scenario SSP245 decreasing the most,to 184,713.526 Tg and 384,459.729 Tg,respectively.CS in the Cheng-Yu(Chengdu-Chongqing)Urban Agglomeration(CYUA)exhibits the opposite upward trend,with scenario SSP126 increasing the most to 153,007.973 Tg.The major cause of CS loss remains the conversion of forest land to construction land in the YRDUA and MYRUA under different scenarios.However,in the CYUA,the conversion of forest land to cultivated land is the major driver of CS loss under scenario SSP126.In contrast,the conversion of cultivated land to construction land dominantly drives CS loss under scenarios SSP245 and SSP585.The conversion of water body to other land use types is the major cause of CS gain in the YRDUA and MYRUA under different scenarios.At the same time,in the CYUA,the driver is the conversion of cultivated land to forest land.These findings demonstrate the significance of the low-carbon development in urban agglomerations at different development stages at home and abroad.展开更多
Long-term droughts,temperature rise,and extreme weather events cause changes in runoff,evaporation,and transpiration in basins.These changes are more severe in arid and semi-arid regions.Since 2007,the discharge of ba...Long-term droughts,temperature rise,and extreme weather events cause changes in runoff,evaporation,and transpiration in basins.These changes are more severe in arid and semi-arid regions.Since 2007,the discharge of baseflow of the Zagros Mountain has decreased and made the supply of agricultural,industrial,and drinking water a big challenge.In this investigation,utilizing data from weather stations,the output of CORDEX,and the WetSpass model,the impact of climate change on river discharge in the Great Karun Basin(GKB)was examined.The temperature and precipitation projections for the period 2019-2040 were analyzed using the Coupled Model Intercomparison Project Phase Six(CMIP6)under scenarios SSP2-4.5 and SSP5-8.5.The findings reveal that the minimum and maximum temperatures are expected to increase by 0.2℃ to 5.1℃ and 0.1℃ to 3.6℃,respectively.Annual precipitation will decrease between 1.3%and 16.7%in scenario SSP2-4.5 and 23.4%in scenario SSP5-8.5.The results of the WetSpass Model for predicting future scenarios indicate a decrease in direct flow(5%),total discharge(27%),and interception(15%).As evapotranspiration will increase by 15%due to climate change,it will be more difficult to predict the water resources’volume of the Karoun Basin for the next decades.Adapting to climate change is the appropriate solution to solve this problem.Changes in temperature and precipitation in these areas pose major challenges to water resources.展开更多
Medicinal plant diversity(MPD)is an indispensable part of global plant diversity,serving as the foundation for human survival by offering remedies and preventive measures against diseases.However,factors such as overe...Medicinal plant diversity(MPD)is an indispensable part of global plant diversity,serving as the foundation for human survival by offering remedies and preventive measures against diseases.However,factors such as overexploitation,competition from invasive alien species,and climate change,threaten the habitats of medicinal plants,necessitating a comprehensive understanding of their spatial distribution and suitable habitats.We leveraged a decade of field survey data on medicinal plant distribution in the Yinshan Mountains,combined with spatial analysis,species distribution modeling,and the Carnegie Ames Stanford Approach(CASA)to explore the MPD spatial distribution and suitable habitats.Spatial analysis revealed that the central and eastern parts of Yinshan Mountains were the primary MPD hotspots,with no cold spots evident at various spatial scales.As the spatial scale decreased,previous non-significant regions transformed into hotspots,with instances where large-scale hotspots became insignificant.These findings offer valuable guidance for safeguarding and nurturing MPD across diverse spatial scales.In future climate change scenarios within the shared socioeconomic pathways(SSP),the habitat suitability for MPD in the Yinshan Mountains predominantly remains concentrated in the central and eastern regions.Notably,areas with high net primary productivity(NPP)values and abundant vegetation coverage align closely with MPD habitat suitability areas,potentially contributing to the region's rich MPD.展开更多
Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Panc...Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Pancic)Purk.).This study describes an approach to assessing the effects of future climate conditions on the growth and the implications for future management to conserve this endangered species on the IUCN Red List.To investigate the climate-growth relationship,age structure and diameter growth trends,we have sampled 231 trees across 11 locations at National Park"Tara"in western Serbia.The existence of heterogeneous age structures suggests that Serbian spruce poses considerable potential for continual regeneration in stands with open canopy.Conducted dendroclimatological analysis exhibits exceptional coherence in growth patterns within populations(Rxy 0.67–0.78),allowing the established climate-sensitive mixed-effect model to achieve conditional R^(c)^(2)=0.683.It is revealed that the radial increment of Serbian spruce is dominantly regulated by water deficit in the summer season.The rainfall amount during the spring is another meaningful climatic factor for growth trends,while minimal winter temperatures and previous autumn water balance show varying influences.Finally,the growth projections under climate change scenarios RCP4.5 and RCP8.5 foreseen reductions of up to one-third and almost half from the historical mean growth rate.The given estimations should be seen as a critical warning signal calling for immediate conversion from passive to active protection to preserve this unique species.展开更多
Landslides pose a significant threat to both human society and environmental sustainability,yet,their spatiotemporal evolution and impacts on global scales in the context of a warming climate remain poorly understood....Landslides pose a significant threat to both human society and environmental sustainability,yet,their spatiotemporal evolution and impacts on global scales in the context of a warming climate remain poorly understood.In this study,we projected global landslide susceptibility under four shared socioeconomic pathways(SSPs)from 2021 to 2100,utilizing multiple machine learning models based on precipitation data from the Coupled Model Intercomparison Project Phase 6(CMIP6)Global Climate Models(GCMs)and static metrics.Our results indicate an overall upward trend in global landslide susceptibility under the SSPs compared to the baseline period(2001–2020),with the most significant increase of about 1%in the very far future(2081–2100)under the high emissions scenario(SSP5-8.5).Currently,approximately 13%of the world’s land area is at very high risk of landslide,mainly in the Cordillera of the Americas and the Andes in South America,the Alps in Europe,the Ethiopian Highlands in Africa,the Himalayas in Asia,and the countries of East and South-East Asia.Notably,India is the country most adversely affected by climate change,particularly during 2081–2100 under SSP3-7.0,with approximately 590 million people—23 times the global average—living in areas categorized as having very high susceptibility.展开更多
Conversion of dryland to paddy fields(CDPF)is an effective way to transition from rain-fed to irrigated agricul ture,helping to mitigate the effects of climate change on agriculture and increase yields to meet growing...Conversion of dryland to paddy fields(CDPF)is an effective way to transition from rain-fed to irrigated agricul ture,helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand.However,the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies.To fill this knowledge gap,this research developed a novel method for quantifying the suitability of CDPF,based on the MaxEnt model for application in Northeast China.We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario(2010-2020),and future projections(2030-2090)coupled with climate change and socioeconomic development scenarios(SSP126,SSP245,and SSP585),and revealed the driving factors behind it.Based on this,we identified potential priority areas for future CDPF implementation.The results show that the suitability of CDPF projects implemented in the past ten years is relatively high.Com pared with the baseline scenario,the suitability of CDPF under the future scenarios will decline overall,with the lightest decrease in the RCP585 and the most severe decrease in the RCP245.The key drivers affecting the suitability of CDPF are elevation,slope,population count,total nitrogen,soil organic carbon content,and precip itation seasonality.The potential priority areas for the future CDPF range from 6,284.61 km^(2)to 37,006.02 km^(2).These findings demonstrate the challenges of CDPF in adapting to climate change and food security,and provide insights for food-producing regions around the world facing climate crises.展开更多
As global warming persistently alters and rapidly reshapes landscapes and habitats, conventional species distribution models relying solely on maintaining static conditions within the current climate are likely to fal...As global warming persistently alters and rapidly reshapes landscapes and habitats, conventional species distribution models relying solely on maintaining static conditions within the current climate are likely to falter, particularly at the genus level. Hence, we hypothesize that climate change will differentially affect ecological niches of the same genus species with various latitudinal positioning and local topography, and the high-latitude species may experience greater niche contraction than low-latitude species, and that mountainous regions with high elevational variability may serve as critical climate refugia. Herein, we simulate niche alterations and integrate an ensemble model(EM) strategy, taking into account species dispersal limitations factors(topography, soil, and ultraviolet), to construct a comprehensive habitat suitability(CHS) model for assessing the future vulnerability of the Betula genus, most of which are timber species in China. Our findings reveal that the niche spatial(geographic distribution) of most species(62%) within the Betula genus will undergo a gradual decline under climate change, supporting our hypothesis of latitudinal differentiation in climate vulnerability. Intriguingly, the projected high-latitude niche reduction within the genus cannot be counterbalanced by the anticipated niche expansion of closely related species in low-latitude regions, even considering the evident latitudinal gradient distribution of species. Nonetheless, the niche spatial of six Betula species in southwestern China remains stable or expands under warming scenarios, strongly supporting our secondary hypothesis about topographic buffering effects, which probably means the unique topography(i.e., the largest elevation difference) of this region may serve as a sanctuary for preserving Betula genetic diversity. Our results underscore the uncertain nature of pre-existing niche systems at the genus level under climate change, emphasizing the need for diligent resource management and conservation planning for vulnerable timber species.展开更多
Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop produc...Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop production.This study first simulates the climate scenarios of Hainan Island for 2030,2040 and 2050 under the four Socio-economic Pathways(SSPs)based on the climate models in ScenarioMIP of Coupled Model Intercomparison Project Phase 6(CMIP6),and then simulates the land use scenarios of Hainan Island for 2030,2040 and 2050 based on the Cellular Automata(CA)-Markov model.Finally,based on the Global Agro-Ecological Zones(GAEZ)model,the rice potential yield in Hainan Island for 2030,2040 and 2050 are simulated,and the effects of future climate and cropland use changes on rice potential yields are investigated.The results show that:1)from 2020 to 2050,mean maximum temperature first decreases and then increases,while mean minimum temperature increase sharply followed by a leveling off under the four SSPs.Precipitation decreases and then increases under other three SSPs except SSP2-4.5.Net solar radiation increases continuously under SSP1-2.6,2-4.5,and 5-8.5,and has the lowest simulated values under SSP3-7.0.Mean wind speed increases continuously under SSP1-2.6,fluctuates more under SSP2-4.5 and SSP5-8.5,and increases slowly and then decreases sharply under SSP3-7.0.Relative humidity basically decreases continuously under the four SSPs.2)Areas of paddy field are 302.49 thousand,302.41 thousand and 302.71 thou-sand ha for 2030,2040 and 2050,respectively,all less than that in 2020.Paddy field is mainly converted into built-up land and wood-land.As for the conversion of other land types to paddy field,woodland is the main source.3)Under the effects of future climate and cropland use changes,the mean potential productions in Hainan Island under the four SSPs increase 1.17 million,1.13 million and 1.11 million t,respectively,and the mean potential yields increase 3873.21,3766.71 and 3672.38 kg/ha,respectively for the three periods.The largest increases in mean rice potential production and mean potential yield are 1.21 million t and 4008.00 kg/ha,1.16 million t and 3846.65 kg/ha,as well as 1.13 million t and 3732.75 kg/ha,respectively under SSP 3-7.0,indicating that SSP3-7.0 is the most suitable scenario for rice growth.This study could provide scientific basis for crop planting planning and agricultural policy adjustment.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
Climate change is expected to alter the popu-lation dynamics of pioneer tree species and their planned use in sustainable forest management,but we have a lim-ited understanding of how their demographic rates change in...Climate change is expected to alter the popu-lation dynamics of pioneer tree species and their planned use in sustainable forest management,but we have a lim-ited understanding of how their demographic rates change in response to climate changes during ecological restora-tion.Based on 12 years of demographic data for a pioneer tree species(Pinus massoniana)censused in three plots that correspond to three stages of ecological restoration in south-eastern China.We built integral projection models(IPMs)to assess vital rates(survival,growth,reproduction)and population growth in each plot,then evaluated demographic changes to simulated changes in seasonal mean temperature and precipitation in the current and previous census period.The plot representing the medium restoration stage had the highest population growth rate(λ=0.983).Mean population survival probability increased with ecological restoration,and reproduction probability was significantly suppressed at the high restoration stage.Survival is always the most important vital rate forλ,and climate affectsλprimarily via survival at each restoration stage.The current spring tem-perature was the most critical climate variable forλin the low and medium restoration stages,and previous summer temperature was most critical in the high restoration stage.Simulated warming leads to a decrease in the stochastic population growth rate(λ_(s))of P.massoniana in every stage.These findings suggest that during ecological restoration,P.massoniana responds to habitat change via modified demo-graphic performance,thus altering its response to climate change.Despite diverse responses to climate change,the persistence of P.massoniana populations is facing a wide-spread threat of warming states at each restoration stages.展开更多
As the impact of climate change intensifies,climate migration(climate change-induced migration)has become a pressing global issue that requires effective adaptation strategies to lessen its effects.Therefore,this stud...As the impact of climate change intensifies,climate migration(climate change-induced migration)has become a pressing global issue that requires effective adaptation strategies to lessen its effects.Therefore,this study delved into the complex relationship between climate change adaptation strategies and climate migration with food insecurity serving as a mediating factor.We collected sample data through face-to-face interviews in Khorramabad City,Iran from February to May in 2023.Using the Structural Equation Modeling(SEM),we explored how food insecurity influences the relationship between climate change adaptation strategies and climate migration.The findings showed that while climate change adaptation strategies can boost community resilience,their success is closely tied to levels of food insecurity.About 78.72%of the surveyed households experienced certain levels of food insecurity,increasing the risk of displacement due to climate-related disasters.Climate change adaptation strategies including economic strategies,irrigation management strategies,organic-oriented strategies,sustainable development-oriented strategies,and crop variety management strategies played a significant role in reducing climate migration.Moreover,we found that climate change adaptation strategies not only impact food security,but also shape migration decisions.This research underscores the importance of an integrated approach that links climate change adaptation strategies,climate migration,and food insecurity.This study emphasizes the importance of food security for formulating sustainable adaptation strategies.展开更多
With their suitable habitats significantly affected by climate change and human activities,most of the seven globally recognized sea turtles are facing endangerment.In order to predict their present and future(2090−21...With their suitable habitats significantly affected by climate change and human activities,most of the seven globally recognized sea turtles are facing endangerment.In order to predict their present and future(2090−2100)potentially suitable habitats,we utilized the MaxEnt model,incorporating occurrence data for various sea turtle species and environmental datasets under current conditions,as well as under two climate scenarios from the Shared Socioeconomic Pathways(SSP1-2.6 and SSP5-8.5).Our findings showed that the key environmental variables,such as temperature and distance from shore predominantly influence the prediction on the potentially suitable habitat for sea turtles.The most highly suitable habitats for sea turtles are predominantly found in the tropical coastal waters bordering continents,including South and North America,Asia,and Australia.Under the climate scenarios of SSP1-2.6 and SSP5-8.5 for 2090−2100,the anticipated loss of potential suitable habitats is expected to surpass any potential gains for all sea turtle species.The Kemp’s ridley sea turtle(Lepidochelys kempii)is especially vulnerable,with its potentially suitable habitat area projected to decrease by 0.43%under SSP1-2.6 scenario to 6.15%under SSP5-8.5 scenario.In contrast,the most resilient Dermochelys coriacea is projected with a reduction of 1.02%under SSP1-2.6 and 0.57%under SSP5-8.5 in its potentially suitable habitat.These varying responses to climate change inferred the necessity for species-specific conservation strategies.However,only 9.9%of the integrated potentially suitable habitat is protected within the World Database on Protected Areas(WDPA),which suggested the extending of WDPA for more efficiency on the sea turtle conservation.展开更多
The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and clim...The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant No.U2342228)the National Key Program for Developing Basic Sciences(Grant No.2020YFA0608902)+1 种基金the National Natural Science Foundation of China(Grant Nos.92358302,and 42242018)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0500303).
文摘In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly exploited in the fields of climate change,climate variability,climate projection,and beyond.This paper provides an overview of LENS in climate systems.It delves into its definition,initialization,significance,and scientific concerns.Additionally,its development history and relevant theories,methods,and primary fields of application are also reviewed.Conclusions obtained from single-model LENS can be more robust compared with those from ensemble simulations with smaller numbers of members.The interactions among model biases,forced responses,and internal variabilities,which serve as the added value in LENS,are highlighted.Finally,we put forward the future trajectory of LENS with climate or Earth system models(ESMs).Super-large ensemble simulation,high-resolution LENS,LENS employing ESMs,and combining LENS with artificial intelligence,will greatly promote the study of climate and related applications.
基金funded by the National Natural Science Foundation of China (42174030)Major Science and Technology Program for Hubei Province (Grant No.2022AAA002)+2 种基金Special fund of Hubei Luojia Loboratory (220100020)the National Natural Science Foundation of China under Grant 42304031the China Postdoctoral Science Foundation 2022M722441。
文摘Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.
基金supported by the Key R&D Project of Science and Technology Program of Tibet Autonomous Region(XZ202301ZY0006G)the Graduate High-level Talent Training Program of Xizang University(2022-GSP-B007)+1 种基金Nagqu City Science and Technology Program Key R&D Projects(NQKJ-2023-15)Central Financial Support for Local Universities to Construct Wetland Station in Mitika and Collaborative Innovation Center for Ecological Civilization of the Qinghai-Tibetan Plateau([2024]NO.01).
文摘This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrological simulation and analyzing the factors affecting runoff volume.Runoff volume and runoff depth were simulated using the VIC model and its performance was evaluated.Meanwhile,the factors affecting runoff volume were analyzed using Spearman correlation.The following model sensitivity parameters were obtained based on the China Natural Runoff Grid Point Dataset(CNRD v1.0):The variable infiltration curve parameter was 0.3,the Dsmax fraction where non-linear baseflow begins was 0.02,the maximum baseflow velocity was 15 mm/d,the maximum soil moisture where non-linear baseflow occurred was 0.7,the second soil moisture layer thickness was 0.3,and the thickness of the third soil moisture layer was 1.5.The surface runoff values in the Nyang River basin were similar in the first and fourth quarters(1.05–2.27 mm and 2.38–4.77 mm,respectively),and the surface runoff values were similar in the second and third quarters when the surface runoff was greater(23.46–52.20 mm and 60.59–85.63 mm,respectively).Watershed area,temperature,and precipitation significantly influenced the amount of runoff from the Nyang River.The applicability of the model to the Nyang River basin was confirmed using two different rate models.In some areas,precipitation and temperature did not have a dominating influence on runoff.Although the VIC model has significant advantages in runoff simulation,it requires a wealth of meteorological,soil,and hydrological data that may be difficult to obtain in some areas.
基金Key Project of National Social Science Fund,No.23AZD032National Natural Science Foundation of China No.42371258Program of China Scholarship Council No.202306850036。
文摘Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps to formulate differential scientific carbon mitigation policies.In this regard,this study constructs an integrated model of SD-PLUS-InVEST to simulate LUCs and CS changes under multi-climate change-based scenarios(SSP126,SSP245,SSP585)for three major urban agglomerations(3UAs)in the Yangtze River Economic Belt.Results demonstrate that land use demand in the 3UAs changes considerably in each scenario.Construction land in the 3UAs remains the most important growth category for the coming decade,but its increase varies in different scenarios.CS in the Yangtze River Delta Urban Agglomeration(YRDUA)and Mid-Yangtze River Urban Agglomeration(MYRUA)shows a similar downward trend under different scenarios,with scenario SSP245 decreasing the most,to 184,713.526 Tg and 384,459.729 Tg,respectively.CS in the Cheng-Yu(Chengdu-Chongqing)Urban Agglomeration(CYUA)exhibits the opposite upward trend,with scenario SSP126 increasing the most to 153,007.973 Tg.The major cause of CS loss remains the conversion of forest land to construction land in the YRDUA and MYRUA under different scenarios.However,in the CYUA,the conversion of forest land to cultivated land is the major driver of CS loss under scenario SSP126.In contrast,the conversion of cultivated land to construction land dominantly drives CS loss under scenarios SSP245 and SSP585.The conversion of water body to other land use types is the major cause of CS gain in the YRDUA and MYRUA under different scenarios.At the same time,in the CYUA,the driver is the conversion of cultivated land to forest land.These findings demonstrate the significance of the low-carbon development in urban agglomerations at different development stages at home and abroad.
基金Iran Water Resources Management Company (IWRMC)the Vice Chancellor for Research and Technology at the University of Isfahan
文摘Long-term droughts,temperature rise,and extreme weather events cause changes in runoff,evaporation,and transpiration in basins.These changes are more severe in arid and semi-arid regions.Since 2007,the discharge of baseflow of the Zagros Mountain has decreased and made the supply of agricultural,industrial,and drinking water a big challenge.In this investigation,utilizing data from weather stations,the output of CORDEX,and the WetSpass model,the impact of climate change on river discharge in the Great Karun Basin(GKB)was examined.The temperature and precipitation projections for the period 2019-2040 were analyzed using the Coupled Model Intercomparison Project Phase Six(CMIP6)under scenarios SSP2-4.5 and SSP5-8.5.The findings reveal that the minimum and maximum temperatures are expected to increase by 0.2℃ to 5.1℃ and 0.1℃ to 3.6℃,respectively.Annual precipitation will decrease between 1.3%and 16.7%in scenario SSP2-4.5 and 23.4%in scenario SSP5-8.5.The results of the WetSpass Model for predicting future scenarios indicate a decrease in direct flow(5%),total discharge(27%),and interception(15%).As evapotranspiration will increase by 15%due to climate change,it will be more difficult to predict the water resources’volume of the Karoun Basin for the next decades.Adapting to climate change is the appropriate solution to solve this problem.Changes in temperature and precipitation in these areas pose major challenges to water resources.
基金The National Key Research and Development Program of China,No.2021YFE0190100Inner Mongolia Autonomous Region Mongolian Medicine Standardization Project,No.2023-[MB023]The Earmarked Fund for CARS,No.CARS-21。
文摘Medicinal plant diversity(MPD)is an indispensable part of global plant diversity,serving as the foundation for human survival by offering remedies and preventive measures against diseases.However,factors such as overexploitation,competition from invasive alien species,and climate change,threaten the habitats of medicinal plants,necessitating a comprehensive understanding of their spatial distribution and suitable habitats.We leveraged a decade of field survey data on medicinal plant distribution in the Yinshan Mountains,combined with spatial analysis,species distribution modeling,and the Carnegie Ames Stanford Approach(CASA)to explore the MPD spatial distribution and suitable habitats.Spatial analysis revealed that the central and eastern parts of Yinshan Mountains were the primary MPD hotspots,with no cold spots evident at various spatial scales.As the spatial scale decreased,previous non-significant regions transformed into hotspots,with instances where large-scale hotspots became insignificant.These findings offer valuable guidance for safeguarding and nurturing MPD across diverse spatial scales.In future climate change scenarios within the shared socioeconomic pathways(SSP),the habitat suitability for MPD in the Yinshan Mountains predominantly remains concentrated in the central and eastern regions.Notably,areas with high net primary productivity(NPP)values and abundant vegetation coverage align closely with MPD habitat suitability areas,potentially contributing to the region's rich MPD.
基金supported by the perennial project activities financed by National Park“Tara”(grants no.1159&1344)The research engagement of M.K.and B.S.was supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia within the framework of the program technological development(grant no.200169)+1 种基金The work of M.K.was also supported by the Science Fond of the Republic of Serbia,grant no.6686EO and in situ based information framework to support generating Carbon Credits in forestry-ForestCO2。
文摘Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Pancic)Purk.).This study describes an approach to assessing the effects of future climate conditions on the growth and the implications for future management to conserve this endangered species on the IUCN Red List.To investigate the climate-growth relationship,age structure and diameter growth trends,we have sampled 231 trees across 11 locations at National Park"Tara"in western Serbia.The existence of heterogeneous age structures suggests that Serbian spruce poses considerable potential for continual regeneration in stands with open canopy.Conducted dendroclimatological analysis exhibits exceptional coherence in growth patterns within populations(Rxy 0.67–0.78),allowing the established climate-sensitive mixed-effect model to achieve conditional R^(c)^(2)=0.683.It is revealed that the radial increment of Serbian spruce is dominantly regulated by water deficit in the summer season.The rainfall amount during the spring is another meaningful climatic factor for growth trends,while minimal winter temperatures and previous autumn water balance show varying influences.Finally,the growth projections under climate change scenarios RCP4.5 and RCP8.5 foreseen reductions of up to one-third and almost half from the historical mean growth rate.The given estimations should be seen as a critical warning signal calling for immediate conversion from passive to active protection to preserve this unique species.
基金supported by the project of National Natural Science Foundation of China(Grant No.42371203 and U21A2032)the project of Sichuan Provincial Science and Technology Department Program Funding(Grant No.2025YFHZ0010)the project of the Science and Technology Program of Aba City(Grant NO.R24YYJSYJ0001).
文摘Landslides pose a significant threat to both human society and environmental sustainability,yet,their spatiotemporal evolution and impacts on global scales in the context of a warming climate remain poorly understood.In this study,we projected global landslide susceptibility under four shared socioeconomic pathways(SSPs)from 2021 to 2100,utilizing multiple machine learning models based on precipitation data from the Coupled Model Intercomparison Project Phase 6(CMIP6)Global Climate Models(GCMs)and static metrics.Our results indicate an overall upward trend in global landslide susceptibility under the SSPs compared to the baseline period(2001–2020),with the most significant increase of about 1%in the very far future(2081–2100)under the high emissions scenario(SSP5-8.5).Currently,approximately 13%of the world’s land area is at very high risk of landslide,mainly in the Cordillera of the Americas and the Andes in South America,the Alps in Europe,the Ethiopian Highlands in Africa,the Himalayas in Asia,and the countries of East and South-East Asia.Notably,India is the country most adversely affected by climate change,particularly during 2081–2100 under SSP3-7.0,with approximately 590 million people—23 times the global average—living in areas categorized as having very high susceptibility.
基金supported by the Ministry of Education of Human-ities and Social Science project,China(Grant No.21YJA630121)the National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2023YFD1500103)+2 种基金the Tsinghua Rural Studies PhD Scholarship(Grant No.202323)2023 Gradu-ate Innovation Fund Project of China University of Geosciences,Beijing(Grant No.ZD2023YC043)National Social Science Fund of China(Grants No.19ZDA096 and 20&ZD090)。
文摘Conversion of dryland to paddy fields(CDPF)is an effective way to transition from rain-fed to irrigated agricul ture,helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand.However,the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies.To fill this knowledge gap,this research developed a novel method for quantifying the suitability of CDPF,based on the MaxEnt model for application in Northeast China.We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario(2010-2020),and future projections(2030-2090)coupled with climate change and socioeconomic development scenarios(SSP126,SSP245,and SSP585),and revealed the driving factors behind it.Based on this,we identified potential priority areas for future CDPF implementation.The results show that the suitability of CDPF projects implemented in the past ten years is relatively high.Com pared with the baseline scenario,the suitability of CDPF under the future scenarios will decline overall,with the lightest decrease in the RCP585 and the most severe decrease in the RCP245.The key drivers affecting the suitability of CDPF are elevation,slope,population count,total nitrogen,soil organic carbon content,and precip itation seasonality.The potential priority areas for the future CDPF range from 6,284.61 km^(2)to 37,006.02 km^(2).These findings demonstrate the challenges of CDPF in adapting to climate change and food security,and provide insights for food-producing regions around the world facing climate crises.
基金funded by the National Science Foundation for Young Scientists of China(No.32001327)the National Key Research and Development Program of China(No.2021YFD2200304-2).
文摘As global warming persistently alters and rapidly reshapes landscapes and habitats, conventional species distribution models relying solely on maintaining static conditions within the current climate are likely to falter, particularly at the genus level. Hence, we hypothesize that climate change will differentially affect ecological niches of the same genus species with various latitudinal positioning and local topography, and the high-latitude species may experience greater niche contraction than low-latitude species, and that mountainous regions with high elevational variability may serve as critical climate refugia. Herein, we simulate niche alterations and integrate an ensemble model(EM) strategy, taking into account species dispersal limitations factors(topography, soil, and ultraviolet), to construct a comprehensive habitat suitability(CHS) model for assessing the future vulnerability of the Betula genus, most of which are timber species in China. Our findings reveal that the niche spatial(geographic distribution) of most species(62%) within the Betula genus will undergo a gradual decline under climate change, supporting our hypothesis of latitudinal differentiation in climate vulnerability. Intriguingly, the projected high-latitude niche reduction within the genus cannot be counterbalanced by the anticipated niche expansion of closely related species in low-latitude regions, even considering the evident latitudinal gradient distribution of species. Nonetheless, the niche spatial of six Betula species in southwestern China remains stable or expands under warming scenarios, strongly supporting our secondary hypothesis about topographic buffering effects, which probably means the unique topography(i.e., the largest elevation difference) of this region may serve as a sanctuary for preserving Betula genetic diversity. Our results underscore the uncertain nature of pre-existing niche systems at the genus level under climate change, emphasizing the need for diligent resource management and conservation planning for vulnerable timber species.
基金Under the auspices of Hainan Provincial Natural Science Foundation of China(No.321QN187,723RC466)Scientific Research Foundation of Hainan University(No.kyqd(sk)2135)Young Scholars Support Program of Hainan University(No.24QNFC-05)。
文摘Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop production.This study first simulates the climate scenarios of Hainan Island for 2030,2040 and 2050 under the four Socio-economic Pathways(SSPs)based on the climate models in ScenarioMIP of Coupled Model Intercomparison Project Phase 6(CMIP6),and then simulates the land use scenarios of Hainan Island for 2030,2040 and 2050 based on the Cellular Automata(CA)-Markov model.Finally,based on the Global Agro-Ecological Zones(GAEZ)model,the rice potential yield in Hainan Island for 2030,2040 and 2050 are simulated,and the effects of future climate and cropland use changes on rice potential yields are investigated.The results show that:1)from 2020 to 2050,mean maximum temperature first decreases and then increases,while mean minimum temperature increase sharply followed by a leveling off under the four SSPs.Precipitation decreases and then increases under other three SSPs except SSP2-4.5.Net solar radiation increases continuously under SSP1-2.6,2-4.5,and 5-8.5,and has the lowest simulated values under SSP3-7.0.Mean wind speed increases continuously under SSP1-2.6,fluctuates more under SSP2-4.5 and SSP5-8.5,and increases slowly and then decreases sharply under SSP3-7.0.Relative humidity basically decreases continuously under the four SSPs.2)Areas of paddy field are 302.49 thousand,302.41 thousand and 302.71 thou-sand ha for 2030,2040 and 2050,respectively,all less than that in 2020.Paddy field is mainly converted into built-up land and wood-land.As for the conversion of other land types to paddy field,woodland is the main source.3)Under the effects of future climate and cropland use changes,the mean potential productions in Hainan Island under the four SSPs increase 1.17 million,1.13 million and 1.11 million t,respectively,and the mean potential yields increase 3873.21,3766.71 and 3672.38 kg/ha,respectively for the three periods.The largest increases in mean rice potential production and mean potential yield are 1.21 million t and 4008.00 kg/ha,1.16 million t and 3846.65 kg/ha,as well as 1.13 million t and 3732.75 kg/ha,respectively under SSP 3-7.0,indicating that SSP3-7.0 is the most suitable scenario for rice growth.This study could provide scientific basis for crop planting planning and agricultural policy adjustment.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.
基金supported by the National Natural Science Foundation of China(grant no.31971638)the Public Welfare Project of Fujian Science and Technology Department(grant no.2024R1002001).
文摘Climate change is expected to alter the popu-lation dynamics of pioneer tree species and their planned use in sustainable forest management,but we have a lim-ited understanding of how their demographic rates change in response to climate changes during ecological restora-tion.Based on 12 years of demographic data for a pioneer tree species(Pinus massoniana)censused in three plots that correspond to three stages of ecological restoration in south-eastern China.We built integral projection models(IPMs)to assess vital rates(survival,growth,reproduction)and population growth in each plot,then evaluated demographic changes to simulated changes in seasonal mean temperature and precipitation in the current and previous census period.The plot representing the medium restoration stage had the highest population growth rate(λ=0.983).Mean population survival probability increased with ecological restoration,and reproduction probability was significantly suppressed at the high restoration stage.Survival is always the most important vital rate forλ,and climate affectsλprimarily via survival at each restoration stage.The current spring tem-perature was the most critical climate variable forλin the low and medium restoration stages,and previous summer temperature was most critical in the high restoration stage.Simulated warming leads to a decrease in the stochastic population growth rate(λ_(s))of P.massoniana in every stage.These findings suggest that during ecological restoration,P.massoniana responds to habitat change via modified demo-graphic performance,thus altering its response to climate change.Despite diverse responses to climate change,the persistence of P.massoniana populations is facing a wide-spread threat of warming states at each restoration stages.
基金support provided by the Department of Agricultural Economics and Rural Development,Faculty of Agriculture,Lorestan University,Iran.
文摘As the impact of climate change intensifies,climate migration(climate change-induced migration)has become a pressing global issue that requires effective adaptation strategies to lessen its effects.Therefore,this study delved into the complex relationship between climate change adaptation strategies and climate migration with food insecurity serving as a mediating factor.We collected sample data through face-to-face interviews in Khorramabad City,Iran from February to May in 2023.Using the Structural Equation Modeling(SEM),we explored how food insecurity influences the relationship between climate change adaptation strategies and climate migration.The findings showed that while climate change adaptation strategies can boost community resilience,their success is closely tied to levels of food insecurity.About 78.72%of the surveyed households experienced certain levels of food insecurity,increasing the risk of displacement due to climate-related disasters.Climate change adaptation strategies including economic strategies,irrigation management strategies,organic-oriented strategies,sustainable development-oriented strategies,and crop variety management strategies played a significant role in reducing climate migration.Moreover,we found that climate change adaptation strategies not only impact food security,but also shape migration decisions.This research underscores the importance of an integrated approach that links climate change adaptation strategies,climate migration,and food insecurity.This study emphasizes the importance of food security for formulating sustainable adaptation strategies.
基金The National Key Research and Development Program of China under contract No.2023YFC2811400.
文摘With their suitable habitats significantly affected by climate change and human activities,most of the seven globally recognized sea turtles are facing endangerment.In order to predict their present and future(2090−2100)potentially suitable habitats,we utilized the MaxEnt model,incorporating occurrence data for various sea turtle species and environmental datasets under current conditions,as well as under two climate scenarios from the Shared Socioeconomic Pathways(SSP1-2.6 and SSP5-8.5).Our findings showed that the key environmental variables,such as temperature and distance from shore predominantly influence the prediction on the potentially suitable habitat for sea turtles.The most highly suitable habitats for sea turtles are predominantly found in the tropical coastal waters bordering continents,including South and North America,Asia,and Australia.Under the climate scenarios of SSP1-2.6 and SSP5-8.5 for 2090−2100,the anticipated loss of potential suitable habitats is expected to surpass any potential gains for all sea turtle species.The Kemp’s ridley sea turtle(Lepidochelys kempii)is especially vulnerable,with its potentially suitable habitat area projected to decrease by 0.43%under SSP1-2.6 scenario to 6.15%under SSP5-8.5 scenario.In contrast,the most resilient Dermochelys coriacea is projected with a reduction of 1.02%under SSP1-2.6 and 0.57%under SSP5-8.5 in its potentially suitable habitat.These varying responses to climate change inferred the necessity for species-specific conservation strategies.However,only 9.9%of the integrated potentially suitable habitat is protected within the World Database on Protected Areas(WDPA),which suggested the extending of WDPA for more efficiency on the sea turtle conservation.
基金funded by the Liaoning Provincial Social Science Planning Fund(L22AYJ010).
文摘The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.