Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the ...Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.展开更多
A novel double chained amphiphile, N-(α-4-hexylphenoxy)-lauroyltaurate (abbreviated as 10 + 6B-T), has been synthesized. The structures of main intermediate products and the title product were characterized by 1H NMR...A novel double chained amphiphile, N-(α-4-hexylphenoxy)-lauroyltaurate (abbreviated as 10 + 6B-T), has been synthesized. The structures of main intermediate products and the title product were characterized by 1H NMR. The new amphiphile shows high surface activity. The critical micelle concentration (cmc), which is 1.1 × 10?5 mol/L, is much lower than that of conventional double chained surfactants, such as sodium bis(2-ethylhexyl)sulfosuccinate (AOT).展开更多
The M_(S)6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior.This area is where the Xianshuihe,Anninghe,Daliangshan and Longmenshan ...The M_(S)6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior.This area is where the Xianshuihe,Anninghe,Daliangshan and Longmenshan faults intersect.China Earthquake Administration has identified that intersection area,among the Moxi segment of the Xianshuihe fault,the Anninghe fault,the Daliangshan fault and the southern part of the Longmenshan fault,as a high-magnitude earthquake hazard area.According to existing data on the Luding earthquake,including the focal parameters,the spatial distribution of re-located aftershocks,dominated azimuth of the earthquake intensities and earthquake-induced ground fissures,we built a 3D earthquake fault model.We found that two discontinuous NNW-trending vertical strike-slip faults with left stepping were the seismogenic faults of the Luding earthquake.Its coseismic left-lateral dislocation triggered transtensional slips and aftershocks on the NW-trending secondary faults at its northernmost tensile area.Meanwhile,local crustal coseismic shortening on the side of Mt.Gongga triggered the aftershocks on the NE-and NW-trending secondary conjugated strike-slip faults,which were confirmed by GNSS observations and In SAR deformation field around the epicenter.This earthquake rupturing pattern also controlled the spatial distribution of the earthquake intensity IX area and earthquake chain hazards.The Coulomb stress calculation shows that the Luding earthquake increases the risk of high-magnitude earthquake occurrence on the southernmost part of the Xianshuihe fault and the Anninghe fault.Finally,we suggested doing good monitoring of the Anninghe fault and the southernmost part of the Xianshuihe fault and avoiding active faults with seismogenic capacity and areas prone to earthquake-chained hazards during the site selection and planning of reconstruction.展开更多
Threshold Proxy Signature (TPS) scheme facilitates a manager to delegate his signing capability to a group of n2 sub-ordinates without revealing his own private key, such that a subgroup of at least t2 ≤ n2 subordina...Threshold Proxy Signature (TPS) scheme facilitates a manager to delegate his signing capability to a group of n2 sub-ordinates without revealing his own private key, such that a subgroup of at least t2 ≤ n2 subordinates is required to generate a proxy signature. In reality, the situation can be more complicated. First of all, the subgroup may further delegate their proxy signing capabilities to another group of n3 subordinates such that at least another subgroup of at least t3 ≤ n3 subordinates are of the proxy signing capabilities (in the form of a chain). t2 can be unequal to t3 depending on the concrete requirement. This is a group-to-group delegation problem. In addition, a supervising agent (SA) may be introduced in the above chain to supervise the subordinates, such that proxy signing can only be successfully executed with SA’s agreement. This is a delegation with supervision problem in the threshold delegation chain described above. These two extensions of delegation problems are not solved yet. This paper designs two provably secure cryptographic schemes Chained Threshold Proxy Signature (CTPS) scheme and Chained Threshold Proxy Signature with Supervision (CTPSwS) scheme to solve these two delegation problems.展开更多
This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control met...This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control method of nonholonomic system,the chained form transformation,the basic graph theory for multi-agent systems are recalled,respectively.Some important definitions,lemmas,theorems and dynamics are elaborated.Both the consensus and formation control problems for networked nonholonomic chained systems are summarised.Finally,some open questions are proposed.展开更多
The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain ...The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain a new uncertain model of the nonholonomic kinematic system in the image plane, which is a chained form with uncalibrated visual parameters, from the camera robotic system. A new time varying feedback controller is proposed for the exponential stabilization of the nonholonomic chained system with unknown parameters by using state-scaling and switching technique. The exponential stability of the closed loop system is rigorously proved. Simulation results demonstrate the effectiveness of the proposed methods.展开更多
Dynamic fund protection provides a guarantee that the account value of the investor never drops below a barrier over the investment period.In order to reduce the downside risk taken by vendors,Han,et al.(2016)proposed...Dynamic fund protection provides a guarantee that the account value of the investor never drops below a barrier over the investment period.In order to reduce the downside risk taken by vendors,Han,et al.(2016)proposed a chained dynamic fund protection(CDFP),whose protection is activated only if the value of basic fund reaches a predefined upper protection line.Motivated by them,we consider a new CDFP plan under a stochastic interest rate environment.The explicit pricing formula for a CDFP is obtained when the protection lines are proportional to a zero-coupon bond.Furthermore,the authors present some numerical results for the value of CDFP at time 0 to show how the model parameters impact the value of CDFP.展开更多
Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’...Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.展开更多
Arbitrated quantum signature(AQS) is an important branch in quantum cryptography to authenticate quantum information, and cryptanalysis on AQS protocols helps to evaluate and improve security of AQS. Recently, it is d...Arbitrated quantum signature(AQS) is an important branch in quantum cryptography to authenticate quantum information, and cryptanalysis on AQS protocols helps to evaluate and improve security of AQS. Recently, it is discovered that an AQS protocol based on chained controlled-NOT(CNOT) algorithm is vulnerable to a novel attack because a transformation from binary keys into permutations and the chained CNOT algorithm have special properties, which enables a malicious receiver to forge signatures with probability 1/2. Moreover, a malicious signer can also deny his signatures with probability 1/4. Then, two possible improved methods are presented to resist these attacks: one is padding constants to reduce probability of the successful attacks, and the other is a circular chained CNOT algorithm to make the attack strategy invalid. And the security analysis shows that both the two improve methods could well resist these attacks.展开更多
A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain c...A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain chained form systems are presented for the robot-camera systems.Then,new smooth time-varying feedback controllers are proposed to exponentially stabilize the uncertain chained system by using state-scaling and control theories for two cases.The exponential stabilities of the closed-loop uncertain systems are rigorously proved.Simulation results demonstrate the effectiveness of the proposed strategies.展开更多
The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presen...The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presented for a type of nonholonomic mobile robots. Then, a new time-varying feedback controller is proposed to stabilize the uncertain system exponentially with the help of the stabilization theorems, state-scaling and switching techniques. The exponential stability of the closed-loop system is rigorously proved. Simulation results are given to demonstrate the effectiveness of the proposed strategies.展开更多
Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and...Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.展开更多
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d...Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.展开更多
Frequent glacier-related watershed geohazard chains are causing severe damage to life and infrastructure,reported consistently from the Eastern Himalayan Syntaxis.This paper presents a systematic method for researchin...Frequent glacier-related watershed geohazard chains are causing severe damage to life and infrastructure,reported consistently from the Eastern Himalayan Syntaxis.This paper presents a systematic method for researching geohazard,from regional to individual scale.The methodology includes the establishment of geological chain inventories,discrimination of geohazard chain modes,analyses of dynamics and dam breaches,and risk assessments.The following results were obtained:(1)In the downstream of Yarlung Zangbo River,175 sites were identified as high-risk for river blockage disasters,indicating the development of watershed geohazards.Five geohazard chain modes were summarized by incorporating geomorphological characteristics,historical events,landslide zoning,and materials.The risk areas of typical hazard were identified and assessed using InSAR data.(2)Glacier-related watershed geohazard chains are significantly different from traditional landslides.A detailed inversion analysis was conducted on the massive rock-ice avalanche in the Sedongpu gully in 2021.This particular event lasted roughly 300 seconds,with a maximum flow velocity of 77.2 m/s and a maximum flow height of 93 meters.By scrutinizing the dynamic processes and mechanical characteristics,mobility stages and phase transitions can be divided into four stages.(3)Watershed geohazard chains tend to block rivers.The peak breach discharge of the Yigong Landslide reached 12.4×10^(4) m^(3)/s,which is 36 times the volume of the seasonal flood discharge in the Yigong River.Megafloods caused by landslide dam breaches have significantly shaped the geomorphology.This study offers insights into disaster patterns and the multistaged movement characteristics of glacier-related watershed geohazard chains,providing a comprehensive method for investigations and assessments in glacial regions.展开更多
The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver ...The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver operational improvements, the heightened interconnectivity introduces significant cybersecurity challenges, particularly within military logistics, where mission-critical operations and life-safety concerns are paramount. This paper examines these unique cybersecurity requirements, focusing on advanced persistent threats, supply chain poisoning, and data breaches that could compromise sensitive operations. The study proposes a hybrid cybersecurity framework tailored to military logistics, integrating resilience, redundancy, and cross-jurisdictional security measures. Real-world applicability is validated through simulations, offering strategies for securing supply chains while balancing security, efficiency, and flexibility.展开更多
Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of com...Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of compounds, facilitate the elongation of polymer chains through reactive functional groups, thereby enhancing the performance of the materials. Epoxy-based chain extenders, due to their cost-effectiveness, low toxicity, high reaction efficiency, and effective reactivity with hydroxyl and carboxyl groups, have emerged as a promising class of chain extenders. This manuscript comprehensively elaborates on the varieties, structural characteristics, and performance of chain extenders, the challenges they face, and the methods for their modification. Special emphasis is placed on the application of epoxy-based chain extenders in biodegradable polymers, such as polylactic acid (PLA), and their subsequent influence on the structural and performance properties of these materials.展开更多
The Regional Comprehensive Economic Partnership(RCEP)has created favorable conditions for building deeply integrated agricultural value chains(AVC)in Asia-Pacific.Based on the RCEP agreement,this study employed the gl...The Regional Comprehensive Economic Partnership(RCEP)has created favorable conditions for building deeply integrated agricultural value chains(AVC)in Asia-Pacific.Based on the RCEP agreement,this study employed the global trade analysis project(GTAP)model to evaluate the impact of RCEP on AVC of member countries in terms of time,tariff reduction,and reduction of non-tariff barriers(NTB).The results indicate that(1)the implementation of RCEP boosts the value-added to agricultural exports for most member countries,particularly in competitive industries;(2)the increase in domestic production and processing capacity,reflected in domestic value-added(DVA),is the primary factor driving the rise in the value-added of agricultural exports across various industries of member countries;(3)RCEP enhances the participation of most regional countries in AVC,with varying impacts on AVC positioning,thereby fostering regional AvC development;and(4)RCEP has a positive effect on AVC indicators both in the short and long term,with the effect becoming more pronounced over time.Additionally,reducing NTB enhances the positive effects of tariff reductions on AVC indicators.Based on the analyses,the following recommendations are proposed:(1)Leverage the development opportunities arising from RCEP implementation to enhance the agricultural DVA;(2)capitalize on cooperative opportunities created by RCEP to build cohesive regional AVC;and(3)prioritize the effective implementation of RCEP'shigh-qualityrules.展开更多
Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detec...Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detection, is facing a lack of simple and fast sensing methods that are compatible with field applications in resource-limited areas. In this work, we developed a sensing approach to identify PCR-amplified Salmonella genomic DNA with the naked eye in a snapshot. Based on the ratiometric fiuorescence signals from SYBR Green Ⅰ and Hydroxyl naphthol blue, positive samples stood out from negative ones with a distinct color pattern under UV exposure. The proposed sensing scheme enabled highly specific identification of Salmonella with a detection limit at the single-copy level. Also, as a supplement to the intuitive naked-eye visualization results, numerical analysis of the colored images was available with a smartphone app to extract RGB values from colored images. This work provides a simple, rapid, and user-friendly solution for PCR identification, which promises great potential in molecular diagnosis of Salmonella and other pathogens in field.展开更多
文摘Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.
文摘A novel double chained amphiphile, N-(α-4-hexylphenoxy)-lauroyltaurate (abbreviated as 10 + 6B-T), has been synthesized. The structures of main intermediate products and the title product were characterized by 1H NMR. The new amphiphile shows high surface activity. The critical micelle concentration (cmc), which is 1.1 × 10?5 mol/L, is much lower than that of conventional double chained surfactants, such as sodium bis(2-ethylhexyl)sulfosuccinate (AOT).
基金supported by the National Natural Science Foundation of China(41941016)the National Natural Science Foundation of China(U1839204)。
文摘The M_(S)6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior.This area is where the Xianshuihe,Anninghe,Daliangshan and Longmenshan faults intersect.China Earthquake Administration has identified that intersection area,among the Moxi segment of the Xianshuihe fault,the Anninghe fault,the Daliangshan fault and the southern part of the Longmenshan fault,as a high-magnitude earthquake hazard area.According to existing data on the Luding earthquake,including the focal parameters,the spatial distribution of re-located aftershocks,dominated azimuth of the earthquake intensities and earthquake-induced ground fissures,we built a 3D earthquake fault model.We found that two discontinuous NNW-trending vertical strike-slip faults with left stepping were the seismogenic faults of the Luding earthquake.Its coseismic left-lateral dislocation triggered transtensional slips and aftershocks on the NW-trending secondary faults at its northernmost tensile area.Meanwhile,local crustal coseismic shortening on the side of Mt.Gongga triggered the aftershocks on the NE-and NW-trending secondary conjugated strike-slip faults,which were confirmed by GNSS observations and In SAR deformation field around the epicenter.This earthquake rupturing pattern also controlled the spatial distribution of the earthquake intensity IX area and earthquake chain hazards.The Coulomb stress calculation shows that the Luding earthquake increases the risk of high-magnitude earthquake occurrence on the southernmost part of the Xianshuihe fault and the Anninghe fault.Finally,we suggested doing good monitoring of the Anninghe fault and the southernmost part of the Xianshuihe fault and avoiding active faults with seismogenic capacity and areas prone to earthquake-chained hazards during the site selection and planning of reconstruction.
文摘Threshold Proxy Signature (TPS) scheme facilitates a manager to delegate his signing capability to a group of n2 sub-ordinates without revealing his own private key, such that a subgroup of at least t2 ≤ n2 subordinates is required to generate a proxy signature. In reality, the situation can be more complicated. First of all, the subgroup may further delegate their proxy signing capabilities to another group of n3 subordinates such that at least another subgroup of at least t3 ≤ n3 subordinates are of the proxy signing capabilities (in the form of a chain). t2 can be unequal to t3 depending on the concrete requirement. This is a group-to-group delegation problem. In addition, a supervising agent (SA) may be introduced in the above chain to supervise the subordinates, such that proxy signing can only be successfully executed with SA’s agreement. This is a delegation with supervision problem in the threshold delegation chain described above. These two extensions of delegation problems are not solved yet. This paper designs two provably secure cryptographic schemes Chained Threshold Proxy Signature (CTPS) scheme and Chained Threshold Proxy Signature with Supervision (CTPSwS) scheme to solve these two delegation problems.
基金supported in part by the National Natural Science Foundation of China under[grant number 61321002],[grant number 61120106010],[grant number 61175112]the programme for New Century Excellent Talents in University+1 种基金the Social Science Foundation of Fujian Province under[grant number 2014B182]the Beijing Education Committee Cooperation Building Foundation Project.
文摘This paper reviews some main results and progress concerning with nonholonomic system control,especially focusing on the networked chained system coordination.The controllability of nonholonomic system,the control method of nonholonomic system,the chained form transformation,the basic graph theory for multi-agent systems are recalled,respectively.Some important definitions,lemmas,theorems and dynamics are elaborated.Both the consensus and formation control problems for networked nonholonomic chained systems are summarised.Finally,some open questions are proposed.
基金supported by the National Science Foundation under Grant No.60874002Key Project of Shanghai Education Committee under Grant No.09ZZ158+1 种基金Key Discipline of Shanghai under Grant No.S30501Doctoral Fund of Shandong University of Technology under Grant No.411016
文摘The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain a new uncertain model of the nonholonomic kinematic system in the image plane, which is a chained form with uncalibrated visual parameters, from the camera robotic system. A new time varying feedback controller is proposed for the exponential stabilization of the nonholonomic chained system with unknown parameters by using state-scaling and switching technique. The exponential stability of the closed loop system is rigorously proved. Simulation results demonstrate the effectiveness of the proposed methods.
基金supported by the NSF of Jiangsu Province under Grant No.BK20170064the NNSF of China under Grant No.11771320+2 种基金Qing Lan Project of Jiangsu Provincethe scholarship of Jiangsu Overseas Visiting Scholar Programthe Graduate Innovation Program of USTS(SKCX18-Y06)
文摘Dynamic fund protection provides a guarantee that the account value of the investor never drops below a barrier over the investment period.In order to reduce the downside risk taken by vendors,Han,et al.(2016)proposed a chained dynamic fund protection(CDFP),whose protection is activated only if the value of basic fund reaches a predefined upper protection line.Motivated by them,we consider a new CDFP plan under a stochastic interest rate environment.The explicit pricing formula for a CDFP is obtained when the protection lines are proportional to a zero-coupon bond.Furthermore,the authors present some numerical results for the value of CDFP at time 0 to show how the model parameters impact the value of CDFP.
基金supported by the National Key R&D Program of China,No.2021YFC2501200(to PC).
文摘Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China (61502048)the National Science and Technology Major Project (2017YFB0803001)
文摘Arbitrated quantum signature(AQS) is an important branch in quantum cryptography to authenticate quantum information, and cryptanalysis on AQS protocols helps to evaluate and improve security of AQS. Recently, it is discovered that an AQS protocol based on chained controlled-NOT(CNOT) algorithm is vulnerable to a novel attack because a transformation from binary keys into permutations and the chained CNOT algorithm have special properties, which enables a malicious receiver to forge signatures with probability 1/2. Moreover, a malicious signer can also deny his signatures with probability 1/4. Then, two possible improved methods are presented to resist these attacks: one is padding constants to reduce probability of the successful attacks, and the other is a circular chained CNOT algorithm to make the attack strategy invalid. And the security analysis shows that both the two improve methods could well resist these attacks.
基金supported by the National Natural Science Foundation of China under Grant Nos.61374040,61304004 and 61473179the Natural Science Foundation of Shandong Province under Grant Nos.ZR2013FM012 and ZR2014FM007
文摘A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain chained form systems are presented for the robot-camera systems.Then,new smooth time-varying feedback controllers are proposed to exponentially stabilize the uncertain chained system by using state-scaling and control theories for two cases.The exponential stabilities of the closed-loop uncertain systems are rigorously proved.Simulation results demonstrate the effectiveness of the proposed strategies.
基金Supported by the the National Natural Science Foundation of China(Nos.61374040,61304004 and 61473179)Natural Science Foundation of Shandong Province(Nos.ZR2013FM012,ZR2014FM007)
文摘The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presented for a type of nonholonomic mobile robots. Then, a new time-varying feedback controller is proposed to stabilize the uncertain system exponentially with the help of the stabilization theorems, state-scaling and switching techniques. The exponential stability of the closed-loop system is rigorously proved. Simulation results are given to demonstrate the effectiveness of the proposed strategies.
基金supported by the National Natural Science Foundation of China,No.82002645China Postdoctoral Science Foundation,No.2022M722321Jiangsu Funding Program for Excellent Postdoctoral Talent,No.2022ZB552(all to YH)。
文摘Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
文摘Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
基金supported by the National Natural Science Foundation of China(Nos.U2244227,U2244226,42177172)the National Key R&D Program of China(No.2022YFC3004301)China Geological Survey Project(No.DD20230538)。
文摘Frequent glacier-related watershed geohazard chains are causing severe damage to life and infrastructure,reported consistently from the Eastern Himalayan Syntaxis.This paper presents a systematic method for researching geohazard,from regional to individual scale.The methodology includes the establishment of geological chain inventories,discrimination of geohazard chain modes,analyses of dynamics and dam breaches,and risk assessments.The following results were obtained:(1)In the downstream of Yarlung Zangbo River,175 sites were identified as high-risk for river blockage disasters,indicating the development of watershed geohazards.Five geohazard chain modes were summarized by incorporating geomorphological characteristics,historical events,landslide zoning,and materials.The risk areas of typical hazard were identified and assessed using InSAR data.(2)Glacier-related watershed geohazard chains are significantly different from traditional landslides.A detailed inversion analysis was conducted on the massive rock-ice avalanche in the Sedongpu gully in 2021.This particular event lasted roughly 300 seconds,with a maximum flow velocity of 77.2 m/s and a maximum flow height of 93 meters.By scrutinizing the dynamic processes and mechanical characteristics,mobility stages and phase transitions can be divided into four stages.(3)Watershed geohazard chains tend to block rivers.The peak breach discharge of the Yigong Landslide reached 12.4×10^(4) m^(3)/s,which is 36 times the volume of the seasonal flood discharge in the Yigong River.Megafloods caused by landslide dam breaches have significantly shaped the geomorphology.This study offers insights into disaster patterns and the multistaged movement characteristics of glacier-related watershed geohazard chains,providing a comprehensive method for investigations and assessments in glacial regions.
文摘The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver operational improvements, the heightened interconnectivity introduces significant cybersecurity challenges, particularly within military logistics, where mission-critical operations and life-safety concerns are paramount. This paper examines these unique cybersecurity requirements, focusing on advanced persistent threats, supply chain poisoning, and data breaches that could compromise sensitive operations. The study proposes a hybrid cybersecurity framework tailored to military logistics, integrating resilience, redundancy, and cross-jurisdictional security measures. Real-world applicability is validated through simulations, offering strategies for securing supply chains while balancing security, efficiency, and flexibility.
文摘Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of compounds, facilitate the elongation of polymer chains through reactive functional groups, thereby enhancing the performance of the materials. Epoxy-based chain extenders, due to their cost-effectiveness, low toxicity, high reaction efficiency, and effective reactivity with hydroxyl and carboxyl groups, have emerged as a promising class of chain extenders. This manuscript comprehensively elaborates on the varieties, structural characteristics, and performance of chain extenders, the challenges they face, and the methods for their modification. Special emphasis is placed on the application of epoxy-based chain extenders in biodegradable polymers, such as polylactic acid (PLA), and their subsequent influence on the structural and performance properties of these materials.
基金supported by the Major Subject of the National Social Science Foundation of China(21&ZD093)the Basic Research Funds of Chinese Academy of Agricultural Sciences(16100520240017)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAASCSAERD-202402,10-IAED-04-2024)the earmarked fund for China Agriculture Research System(CARS-08).
文摘The Regional Comprehensive Economic Partnership(RCEP)has created favorable conditions for building deeply integrated agricultural value chains(AVC)in Asia-Pacific.Based on the RCEP agreement,this study employed the global trade analysis project(GTAP)model to evaluate the impact of RCEP on AVC of member countries in terms of time,tariff reduction,and reduction of non-tariff barriers(NTB).The results indicate that(1)the implementation of RCEP boosts the value-added to agricultural exports for most member countries,particularly in competitive industries;(2)the increase in domestic production and processing capacity,reflected in domestic value-added(DVA),is the primary factor driving the rise in the value-added of agricultural exports across various industries of member countries;(3)RCEP enhances the participation of most regional countries in AVC,with varying impacts on AVC positioning,thereby fostering regional AvC development;and(4)RCEP has a positive effect on AVC indicators both in the short and long term,with the effect becoming more pronounced over time.Additionally,reducing NTB enhances the positive effects of tariff reductions on AVC indicators.Based on the analyses,the following recommendations are proposed:(1)Leverage the development opportunities arising from RCEP implementation to enhance the agricultural DVA;(2)capitalize on cooperative opportunities created by RCEP to build cohesive regional AVC;and(3)prioritize the effective implementation of RCEP'shigh-qualityrules.
基金supported by the Macao Science and Technology Development Fund(FDCT)(Nos.FDCT 0029/2021/A1,FDCT0002/2021/AKP,004/2023/SKL,0036/2021/APD)University of Macao(No.MYRG-GRG2023-00034-IME,SRG2024-00057IME)+2 种基金Dr.Stanley Ho Medical Development Foundation(No.SHMDF-OIRFS/2024/001)Zhuhai Huafa Group(No.HF-006-2021)Guangdong Science and Technology Department(No.2022A0505030022)。
文摘Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detection, is facing a lack of simple and fast sensing methods that are compatible with field applications in resource-limited areas. In this work, we developed a sensing approach to identify PCR-amplified Salmonella genomic DNA with the naked eye in a snapshot. Based on the ratiometric fiuorescence signals from SYBR Green Ⅰ and Hydroxyl naphthol blue, positive samples stood out from negative ones with a distinct color pattern under UV exposure. The proposed sensing scheme enabled highly specific identification of Salmonella with a detection limit at the single-copy level. Also, as a supplement to the intuitive naked-eye visualization results, numerical analysis of the colored images was available with a smartphone app to extract RGB values from colored images. This work provides a simple, rapid, and user-friendly solution for PCR identification, which promises great potential in molecular diagnosis of Salmonella and other pathogens in field.