The ionic transport process in polymer electrolytes (such as polyethylene oxide) wassimulated numerically on a two dimensional square lattice where charge carriers areaccommodated by the lattice sites connected random...The ionic transport process in polymer electrolytes (such as polyethylene oxide) wassimulated numerically on a two dimensional square lattice where charge carriers areaccommodated by the lattice sites connected randomly with available bonds to represent theamorphous chain configuration. Following the dynamic bond percolation theory(DBPT),the chainmotion contribution to the ionic conduction was incorporated via periodical renewal of the randombond configuration. To check and extend the prediction made by DBPT employing global abruptbond renewal,spatial correlation of the bond reassignment was introduced to the system by: 1)regional bond renewal and 2) organized bond motion. It is found that the difference between thediffusivities simulated involving regional bond renewal and those of DBPT becomes negligiblewhen the bond renewal rate approaches the carrier hopping rate.展开更多
The temperature-induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polysty- rene-block-polybutadiene-block-polystyrene (SBS) and polystyrene-block-poly(ethylene-co-l-butene)-block-poly- ...The temperature-induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polysty- rene-block-polybutadiene-block-polystyrene (SBS) and polystyrene-block-poly(ethylene-co-l-butene)-block-poly- styrene (SEBS), were studied by intrinsic fluorescence method. For SBS, the glass transition temperatures (Tgs) of B block and S block obtained by intrinsic fluorescence method were in good agreement with differential scanning calorimetry measurements (DSC). In the case of SEBS, an isoemission point was observed at about 310 nm at ele- vated temperatures, suggesting the slight conversion between the monomer and excimer emission. On this basis, the molecular chain motion of SEBS was monitored by both fluorescence intensity and excimer/monomer fluorescence ratio. Besides the Tgs of S block and EB blocks, a melting point (Tin) of weak crystalline in EB block was unambiguously determined by intrinsic fluorescence. Furthermore, it was found that the melting process directly led to the slight loosening of PS segments in interface and consequently the reduction of the amount of excimer. A reasonable mechanism was proposed to describe the molecular chain movements and phase transitions of SEBS upon heating. Moreover, the influence of temperature on the apparent activation energy of non-radiative process ( E^T ) around Tg of S block was much stronger than that around Tg of B or EB blocks.展开更多
An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equ...An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.展开更多
Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a sim...Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.展开更多
The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculati...The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.展开更多
文摘The ionic transport process in polymer electrolytes (such as polyethylene oxide) wassimulated numerically on a two dimensional square lattice where charge carriers areaccommodated by the lattice sites connected randomly with available bonds to represent theamorphous chain configuration. Following the dynamic bond percolation theory(DBPT),the chainmotion contribution to the ionic conduction was incorporated via periodical renewal of the randombond configuration. To check and extend the prediction made by DBPT employing global abruptbond renewal,spatial correlation of the bond reassignment was introduced to the system by: 1)regional bond renewal and 2) organized bond motion. It is found that the difference between thediffusivities simulated involving regional bond renewal and those of DBPT becomes negligiblewhen the bond renewal rate approaches the carrier hopping rate.
文摘The temperature-induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polysty- rene-block-polybutadiene-block-polystyrene (SBS) and polystyrene-block-poly(ethylene-co-l-butene)-block-poly- styrene (SEBS), were studied by intrinsic fluorescence method. For SBS, the glass transition temperatures (Tgs) of B block and S block obtained by intrinsic fluorescence method were in good agreement with differential scanning calorimetry measurements (DSC). In the case of SEBS, an isoemission point was observed at about 310 nm at ele- vated temperatures, suggesting the slight conversion between the monomer and excimer emission. On this basis, the molecular chain motion of SEBS was monitored by both fluorescence intensity and excimer/monomer fluorescence ratio. Besides the Tgs of S block and EB blocks, a melting point (Tin) of weak crystalline in EB block was unambiguously determined by intrinsic fluorescence. Furthermore, it was found that the melting process directly led to the slight loosening of PS segments in interface and consequently the reduction of the amount of excimer. A reasonable mechanism was proposed to describe the molecular chain movements and phase transitions of SEBS upon heating. Moreover, the influence of temperature on the apparent activation energy of non-radiative process ( E^T ) around Tg of S block was much stronger than that around Tg of B or EB blocks.
基金This work was financially supported by the National Natural Science Foundation of China
文摘An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.
基金financial support for the PhD study from GL-Nobel Denton based in London
文摘The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.