Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2...Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2-MePh)-cyclopento[2,3-b]thiophen-6-yl)2}ZCl2,in the presence of iBu3Al as a chain shutting agent.by studying the catalyst activity,chain transfer efficiency,and reversility of chain transfer reaction of each catalyst system,as well as the molecular weight and polydispersity of the resulting polymers,the allyl exchange reactions between the zirconium catalyst and different main-group metal alky were estimated,respectvely.Based on the optimized react condition,the chain shuttling polymerization was conducted by binary catalyst system in the presence of iBu3Al under both atmospheric and high pressure.Resultant polymers were identified as stereoblock polypropylenes according to microstructure and physical properties analyses by 13C{1H}-NMR,DsC,and GPC.展开更多
Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the ...Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.展开更多
To make more homogenous organic monolithic structure, reversible addition-fragmentation chain transfer (RAFT) process was employed in the synthesis of the clenbuterol imprinted polymer. In the synthesis, the influen...To make more homogenous organic monolithic structure, reversible addition-fragmentation chain transfer (RAFT) process was employed in the synthesis of the clenbuterol imprinted polymer. In the synthesis, the influence of synthetic conditions on the polymer structure and separation efficiency was studied. The result demonstrated that the imprinted columns prepared with RAFT process have higher column efficiency and selectivity than the columns prepared with conventional polymerization in the present study, which may result from the higher surface area, smaller pore size and the narrower globule size distribution in their structures. The result indicated that RAFT polymerization provided better conditions for the clenbuterol imprinted monolithic polymer preparation. 2009 Xiang Chao Dong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Reversible chain transfer catalyzed polymerization(RTCP)is a practical and efficient process for the precise synthesis of polymers with special architecture by using simple phenols(2,4,6-trimethylphenol,TMP)or hydroca...Reversible chain transfer catalyzed polymerization(RTCP)is a practical and efficient process for the precise synthesis of polymers with special architecture by using simple phenols(2,4,6-trimethylphenol,TMP)or hydrocarbons(xanthene,XT)as efficient organocatalysts.Herein,alkyl iodide(R-1),which was gen erated from in situ bromine-iodine transformation of alkyl bromide(R-Br)with sodium iodide(Nal),was served as initiator to mediate RTCP with TMP or XT.MMA and other functional methacrylates,including GMA,DEAM,DMAEMA and BzMA,were successfully initiated by combining orga no catalysts and azo in itiators to yield polymers with low-polydispersity(M_(w)/M_(n)=1.1-1.5)and ideal mono mer conversions(50%-90%)at moderate temperature.More over,3-armstar polymers were also obtained by this method.The high chain-end fidelity of the obtained poly(methyl methacrylate)with iodine as chain-end group(PMMA-I)was confirmed by chain-extension reaction.The en vironme ntally frie ndly initiators and orga no catalysts exhibit powerful polymerization properties toward RTCP,providing a sign ificant method to synthesize functional polymers.展开更多
The article describes ethylene polymerization reactions with transition metal catalysts based on complexes of CoCl_(2) and FeCl_(2) with an N,N,N-tridentate ligand 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine. Th...The article describes ethylene polymerization reactions with transition metal catalysts based on complexes of CoCl_(2) and FeCl_(2) with an N,N,N-tridentate ligand 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine. The complexes are converted into polymerization catalysts by reacting them either with polymethylalumoxane (MAO) or with a combination of Al(C2H5)2Cl and Mg(C4H9)2 at an [Al]:[Mg] ratio of ~3. Both MAO-activated complexes readily polymerize ethylene at 35 ℃ with the formation of linear, low molecular weight polymers with a narrow molecular weight distribution. The same complexes, when activated with the Al(C2H5)2Cl-Mg(C4H9)2 combination, form multi-center catalysts and generate polyethylenes with a broad molecular weight distribution.展开更多
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes...Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.展开更多
Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(me...Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.展开更多
Polymerization-induced self-assembly(PISA)is an emerging method for the preparation of block copolymer nano-objects at high concentrations.However,most PISA formulations have oxygen inhibition problems and inert atmos...Polymerization-induced self-assembly(PISA)is an emerging method for the preparation of block copolymer nano-objects at high concentrations.However,most PISA formulations have oxygen inhibition problems and inert atmospheres(e.g.argon,nitrogen)are usually required.Moreover,the large-scale preparation of block copolymer nano-objects at room temperature is challenging.Herein,we report an enzyme-assisted photoinitiated polymerization-induced self-assembly(photo-PISA)in continuous flow reactors with oxygen toleranee.The addition of glucose oxidase(GOx)and glucose into the reaction mixture can consume oxygen efficiently and constantly,allow the flow photo-PISA to be performed under open-air conditions.Polymerization kinetics indicated that only a small amount of GOx(0.5 μmol/L)was needed to achieve the oxygen tolerance.Block copolymer nano-objects with different morphologies can be prepared by varying reaction conditions including the degree of polymerization(DP)of core-forming block,monomer concentration,reaction temperature,and solvent composition.We expect this study will provide a facile platform for the large-scale production of block copolymer nano-objects with different morphologies at room temperature.展开更多
By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by var...By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.展开更多
The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controlla...The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.展开更多
The shape of unperturbed polymer chains was studied using the Monte Carlo technique on a tetrahedral lattice. The asphericity A, the ratios <L-2(2)>/<L-1(2)> and <L-3(2)>/<L-1(2)> were calculat...The shape of unperturbed polymer chains was studied using the Monte Carlo technique on a tetrahedral lattice. The asphericity A, the ratios <L-2(2)>/<L-1(2)> and <L-3(2)>/<L-1(2)> were calculated for different Values of polymer chain length n, conformational energy epsilon (epsilon greater than or equal to 0) and temperature T. The asphericity A decreases with the increase of chain length and tends to reach its limiting value rapidly with the decrease of gamma (gamma = epsilon/k(B)T). For large n, A is about 0.525 +/- 0.005, the ratios <L-2(2)>/<L-1(2)> and <L-3(2)>/<L-1(2)> are about 2.7 and 12.0, respectively, and are almost independent of gamma, but for short chains, they depend on gamma.展开更多
The reaction of zinc carbonate with o-phthalic acid and imidazole in an aqueous-alcohol solution led to the formation of colorless crystals of [Zn(-phth)(imi)2]∞. Single-crystal X-ray analysis has revealed that the c...The reaction of zinc carbonate with o-phthalic acid and imidazole in an aqueous-alcohol solution led to the formation of colorless crystals of [Zn(-phth)(imi)2]∞. Single-crystal X-ray analysis has revealed that the complex crystallizes in a monoclinic system, space group Pn with a = 8.394(2), b = 9.976(3), c = 9.959(3) ? ?= 104.409(4)? V = 807.6(4) ?, Z = 2, C14H12N4O4Zn, Mr = 365.65, Dc = 1.504 g/cm3, ?= 1.544 mm-1, F(000) = 372, the final R = 0.0466 and wR = 0.1171 for 1834 reflections with I >2(I). The complex displays a zigzag infinite chain structure in which each zinc (Ⅱ) center is coordinated by two oxygen atoms and two nitrogen atoms to generate a ZnN2O2 distorted tetrahedral geometry. The neighboring zinc atoms are bridged by the o-phthalate ligand. Each chain is linked by hydrogen bonds with its neighbors to form a three-dimensional coordination polymer.展开更多
A new AgO) coordination polymer, {[Ag(1,3-BIP)(H20)][Ag(1,3- BIP)(PMA)0.5.- 4H20}n (PMA = 1,2,4,5-benzenetricarboxylic acid, 1,3-BIP = 1,3-bis(imidazole)propane), have been synthesized and characterized b...A new AgO) coordination polymer, {[Ag(1,3-BIP)(H20)][Ag(1,3- BIP)(PMA)0.5.- 4H20}n (PMA = 1,2,4,5-benzenetricarboxylic acid, 1,3-BIP = 1,3-bis(imidazole)propane), have been synthesized and characterized by single-crystal X-ray diffraction, powder XRD, FTIR, TGA and elemental analysis techniques. The single-crystal X-ray diffraction reveals that the title complex is formed by 1D polymeric cationic chains of [Ag(1,3-BIP)(H2O)]n^n+ and 2D polymetric anionic layer of [Ag(1,3-BIP)(PMA)0.5]n^n-, which are further linked by intermolecular H-bonding to form a 3D supramolecular framework. In addition, the photoluminescence property of the title complex in the solid state at room temperature was also investigated.展开更多
Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA)...Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA) model for branched alkanes. The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps. At the beginning, the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process. Statistical parameters as mean-square radii of gyration 〈S2〉xy, 〈S2〉z, shape factor 〈δ〉, describing the conformational changes, sectional density 〈den〉 which gives the states of the chain, and average surface attractive energy 〈Ua〉, average total energy 〈U〉, average force 〈f〉 probed by the spring, which characterize the thermodynamic properties, are calculated in the stimulant process. Remarkably, distinguishing from the case in linear chains that there only exists one long plateau in the curve of 〈f 〉, the force plateau in our study for star chains is multiple, denoting different steps of desorption, and this agrees well with the experimental results in essence. We find during the tensile process, there are three characteristic distances Zc, Zt and Z0 from the attractive surface, and these values vary with N. When Z = Zc, the chain is stripped from the surface, but due to the form of wall-monomer interaction, the surface retains weak influence on the chain till Z = Zc. From Z = Zt, parameters 〈Ua〉, 〈U〉 and 〈f〉 respectively reach a stable value, while the shape and the size of the chain still need adjustments after Zt till Zo to reach their equilibrium states. Specifically, for short chain of N = 41, Zt and Z0 are incorporated. These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains.展开更多
The structural transition of a single polymer chain with chain length of 100,200 and 300 beads was investigated by parallel tempering MD simulation.Our simulation results can capture the structural change from random ...The structural transition of a single polymer chain with chain length of 100,200 and 300 beads was investigated by parallel tempering MD simulation.Our simulation results can capture the structural change from random coil to orientationally ordered structure with decreasing temperature.The clear transition was observed on the curves of radius of gyration and global orientational order parameter P as the function of temperature,which demonstrated structural formation of a single polymer chain.The linear relationships between three components of square radius of gyration R_(gx)~2,R_(gx)~2,R_(gz)~2 and global orientational order P can be obtained under the structurally transformational process.The slope of the linear relationship between x(or y-axis) component R_(gx)~2(or R_(gy)~2) and P is negative,while that of RL as the function of P is positive.The absolute value of slope is proportional to the chain length.Once the single polymer chain takes the random coil or ordered configuration,the linear relationship is invalid.The conformational change was also analyzed on microscopic scale.The polymer chain can be treated as the construction of rigid stems connecting by flexible loops.The deviation from exponentially decreased behavior of stem length distribution becomes prominent,indicating a stiffening of the chain arises leading to more and more segments ending up in the trans state with decreasing temperature.The stem length N_(tr) is about 21 bonds indicating the polymer chain is ordered with the specific fold length.So,the simulation results,which show the prototype of a liquid-crystalline polymer chain,are helpful to understand the crystallization process of crystalline polymers.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
Two novel coordination polymers with helical chains, {[Zn(L)(H2O)]·H2O}n(1) and {[Zn(L)(p-bix)]·3.5H2O}n(2), where H2 L = 5-(4-hydroxypyridinium-1-ylmethyl) isophthalic acid and p-bix = 1,4-bis...Two novel coordination polymers with helical chains, {[Zn(L)(H2O)]·H2O}n(1) and {[Zn(L)(p-bix)]·3.5H2O}n(2), where H2 L = 5-(4-hydroxypyridinium-1-ylmethyl) isophthalic acid and p-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, have been hydrothermally synthesized, and charac-terized by elemental analysis, powder X-ray diffraction(PXRD), IR, thermal gravimetric analyses(TGA) and also by single-crystal X-ray diffraction. Both complexes 1 and 2 crystallize inmonoclinic, space group P21/c. Compound 1 displays a two-dimensional(2D) structure with two distinct types of helical chains; 2 shows a layered coordination polymer with two types of helical chains and features an interesting 2D→3D interdigitated architecture. Meanwhile, the luminescent properties of 1 and 2 have also been investigated in detail.展开更多
The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction stren...The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction strengthεand the chain length N was investigated by a finite-size scaling law M = N;[a;+a;N;κ+ O((N;κ);)]forεnear the critical adsorption pointε;,i.e.,κ=(ε-ε;)/ε;closes to 0.The critical adsorption point was estimated to beε;=0.93,and the exponentsφ= 0.49 and l/v= 0.57.展开更多
The number of configurations, c(n, m), of a single chain with length n attached to a flat surface with m monomers contacting the surface is exactly enumerated. A fimction of c(n, m) about m and n is obtained. From...The number of configurations, c(n, m), of a single chain with length n attached to a flat surface with m monomers contacting the surface is exactly enumerated. A fimction of c(n, m) about m and n is obtained. From the function, a scaling law for mean energy of chain is derived, and we estimate the critical point εc = 0.276 and the crossover exponent φ = 0.5. The free energy difference between tethered chain and free chain in dilute solution is also studied, which shows the critical adsorption point is about 0.272 for infinite long chain with φ= 0.5.展开更多
The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The p...The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.展开更多
基金the National Natural Science Foundation of China(No.21574097).
文摘Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2-MePh)-cyclopento[2,3-b]thiophen-6-yl)2}ZCl2,in the presence of iBu3Al as a chain shutting agent.by studying the catalyst activity,chain transfer efficiency,and reversility of chain transfer reaction of each catalyst system,as well as the molecular weight and polydispersity of the resulting polymers,the allyl exchange reactions between the zirconium catalyst and different main-group metal alky were estimated,respectvely.Based on the optimized react condition,the chain shuttling polymerization was conducted by binary catalyst system in the presence of iBu3Al under both atmospheric and high pressure.Resultant polymers were identified as stereoblock polypropylenes according to microstructure and physical properties analyses by 13C{1H}-NMR,DsC,and GPC.
基金financially supported by the National Natural Science Foundation of China(No.U1862206)Jilin Province Department of Education(No.JJKH20200665KJ)+3 种基金Dr.W.Zhao thanks for the financial support from China Postdoctoral Science Foundation(No.2021M701818)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE237)Qingdao Postdoctoral Applied Research Project,PetroChina Company Limited(No.2020B-2711)H.Liu sincerely acknowledges the financial support from the Taishan Scholars Program。
文摘Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.
基金supported by the National Natural Science Foundation of China(No.20575030)
文摘To make more homogenous organic monolithic structure, reversible addition-fragmentation chain transfer (RAFT) process was employed in the synthesis of the clenbuterol imprinted polymer. In the synthesis, the influence of synthetic conditions on the polymer structure and separation efficiency was studied. The result demonstrated that the imprinted columns prepared with RAFT process have higher column efficiency and selectivity than the columns prepared with conventional polymerization in the present study, which may result from the higher surface area, smaller pore size and the narrower globule size distribution in their structures. The result indicated that RAFT polymerization provided better conditions for the clenbuterol imprinted monolithic polymer preparation. 2009 Xiang Chao Dong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金We gratefully acknowledge the financial support from Natural Science Foundation of Fujian Province(No.2019J05040)Key Program of Qingyuan Innovation Laboratory(No.00221003)‘111'program and Talent program of Fuzhou University(No.GXRC-18041).
文摘Reversible chain transfer catalyzed polymerization(RTCP)is a practical and efficient process for the precise synthesis of polymers with special architecture by using simple phenols(2,4,6-trimethylphenol,TMP)or hydrocarbons(xanthene,XT)as efficient organocatalysts.Herein,alkyl iodide(R-1),which was gen erated from in situ bromine-iodine transformation of alkyl bromide(R-Br)with sodium iodide(Nal),was served as initiator to mediate RTCP with TMP or XT.MMA and other functional methacrylates,including GMA,DEAM,DMAEMA and BzMA,were successfully initiated by combining orga no catalysts and azo in itiators to yield polymers with low-polydispersity(M_(w)/M_(n)=1.1-1.5)and ideal mono mer conversions(50%-90%)at moderate temperature.More over,3-armstar polymers were also obtained by this method.The high chain-end fidelity of the obtained poly(methyl methacrylate)with iodine as chain-end group(PMMA-I)was confirmed by chain-extension reaction.The en vironme ntally frie ndly initiators and orga no catalysts exhibit powerful polymerization properties toward RTCP,providing a sign ificant method to synthesize functional polymers.
基金carried out according to the program of Fundamental Scientific Research of the Russian Federation
文摘The article describes ethylene polymerization reactions with transition metal catalysts based on complexes of CoCl_(2) and FeCl_(2) with an N,N,N-tridentate ligand 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine. The complexes are converted into polymerization catalysts by reacting them either with polymethylalumoxane (MAO) or with a combination of Al(C2H5)2Cl and Mg(C4H9)2 at an [Al]:[Mg] ratio of ~3. Both MAO-activated complexes readily polymerize ethylene at 35 ℃ with the formation of linear, low molecular weight polymers with a narrow molecular weight distribution. The same complexes, when activated with the Al(C2H5)2Cl-Mg(C4H9)2 combination, form multi-center catalysts and generate polyethylenes with a broad molecular weight distribution.
基金Supported by the National Natural Science Foundation of China(21776217,21506160)Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06400)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars(48)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.
基金This work was supported by the National Natural Science Foundation of China (No.21334001 and No.91127030).
文摘Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21971047 and 21504017)Innovation Project of Education Department in Guangdong(No.2018KTSCX053)+1 种基金Y.C.acknowledges the support from Guangdong Special Support Program(No.2017TX04N371)J.T.acknowledges the support from Pearl River Young Scholar of Guangdong.
文摘Polymerization-induced self-assembly(PISA)is an emerging method for the preparation of block copolymer nano-objects at high concentrations.However,most PISA formulations have oxygen inhibition problems and inert atmospheres(e.g.argon,nitrogen)are usually required.Moreover,the large-scale preparation of block copolymer nano-objects at room temperature is challenging.Herein,we report an enzyme-assisted photoinitiated polymerization-induced self-assembly(photo-PISA)in continuous flow reactors with oxygen toleranee.The addition of glucose oxidase(GOx)and glucose into the reaction mixture can consume oxygen efficiently and constantly,allow the flow photo-PISA to be performed under open-air conditions.Polymerization kinetics indicated that only a small amount of GOx(0.5 μmol/L)was needed to achieve the oxygen tolerance.Block copolymer nano-objects with different morphologies can be prepared by varying reaction conditions including the degree of polymerization(DP)of core-forming block,monomer concentration,reaction temperature,and solvent composition.We expect this study will provide a facile platform for the large-scale production of block copolymer nano-objects with different morphologies at room temperature.
基金supported the National Natural Science Foundation of China(Nos.11032006,11072094,and11121202)the Ph.D.Program Foundation of Ministry of Education of China(No.20100211110022)+1 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program of China(No.2013GB110002)the Fundamental Research Funds for the Central Universities(No.lzujbky2013-1)
文摘By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.
基金supported by the National Natural Science Foundation of China (11032006, 11072094, and 11121202)the PhD Program Foundation of the Ministry of Education of China (20100211110022)+1 种基金New Century Excellent Talents in University (NCET-10-0445)supported by the National Science Foundation through grant CMMI-1028530 to Brown University
文摘The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.
基金This work was supported by the National Natural Science Foundation of China (No. 29736170).
文摘The shape of unperturbed polymer chains was studied using the Monte Carlo technique on a tetrahedral lattice. The asphericity A, the ratios <L-2(2)>/<L-1(2)> and <L-3(2)>/<L-1(2)> were calculated for different Values of polymer chain length n, conformational energy epsilon (epsilon greater than or equal to 0) and temperature T. The asphericity A decreases with the increase of chain length and tends to reach its limiting value rapidly with the decrease of gamma (gamma = epsilon/k(B)T). For large n, A is about 0.525 +/- 0.005, the ratios <L-2(2)>/<L-1(2)> and <L-3(2)>/<L-1(2)> are about 2.7 and 12.0, respectively, and are almost independent of gamma, but for short chains, they depend on gamma.
基金Supported by the National Natural Science Foundation of China (29872037) and the Natural Science Foundation of Fujian province (C0120002)
文摘The reaction of zinc carbonate with o-phthalic acid and imidazole in an aqueous-alcohol solution led to the formation of colorless crystals of [Zn(-phth)(imi)2]∞. Single-crystal X-ray analysis has revealed that the complex crystallizes in a monoclinic system, space group Pn with a = 8.394(2), b = 9.976(3), c = 9.959(3) ? ?= 104.409(4)? V = 807.6(4) ?, Z = 2, C14H12N4O4Zn, Mr = 365.65, Dc = 1.504 g/cm3, ?= 1.544 mm-1, F(000) = 372, the final R = 0.0466 and wR = 0.1171 for 1834 reflections with I >2(I). The complex displays a zigzag infinite chain structure in which each zinc (Ⅱ) center is coordinated by two oxygen atoms and two nitrogen atoms to generate a ZnN2O2 distorted tetrahedral geometry. The neighboring zinc atoms are bridged by the o-phthalate ligand. Each chain is linked by hydrogen bonds with its neighbors to form a three-dimensional coordination polymer.
基金Supported by the National Natural Science Foundation of China(No.21373132)the Science Foundation of Shaanxi University of Technology(No.SLGKY-36)
文摘A new AgO) coordination polymer, {[Ag(1,3-BIP)(H20)][Ag(1,3- BIP)(PMA)0.5.- 4H20}n (PMA = 1,2,4,5-benzenetricarboxylic acid, 1,3-BIP = 1,3-bis(imidazole)propane), have been synthesized and characterized by single-crystal X-ray diffraction, powder XRD, FTIR, TGA and elemental analysis techniques. The single-crystal X-ray diffraction reveals that the title complex is formed by 1D polymeric cationic chains of [Ag(1,3-BIP)(H2O)]n^n+ and 2D polymetric anionic layer of [Ag(1,3-BIP)(PMA)0.5]n^n-, which are further linked by intermolecular H-bonding to form a 3D supramolecular framework. In addition, the photoluminescence property of the title complex in the solid state at room temperature was also investigated.
基金supported by the National Natural Science Foundation of China(Nos.20904047,10947104).
文摘Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA) model for branched alkanes. The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps. At the beginning, the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process. Statistical parameters as mean-square radii of gyration 〈S2〉xy, 〈S2〉z, shape factor 〈δ〉, describing the conformational changes, sectional density 〈den〉 which gives the states of the chain, and average surface attractive energy 〈Ua〉, average total energy 〈U〉, average force 〈f〉 probed by the spring, which characterize the thermodynamic properties, are calculated in the stimulant process. Remarkably, distinguishing from the case in linear chains that there only exists one long plateau in the curve of 〈f 〉, the force plateau in our study for star chains is multiple, denoting different steps of desorption, and this agrees well with the experimental results in essence. We find during the tensile process, there are three characteristic distances Zc, Zt and Z0 from the attractive surface, and these values vary with N. When Z = Zc, the chain is stripped from the surface, but due to the form of wall-monomer interaction, the surface retains weak influence on the chain till Z = Zc. From Z = Zt, parameters 〈Ua〉, 〈U〉 and 〈f〉 respectively reach a stable value, while the shape and the size of the chain still need adjustments after Zt till Zo to reach their equilibrium states. Specifically, for short chain of N = 41, Zt and Z0 are incorporated. These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains.
基金financially supported by the Science and Technology Planning Project of Zhejiang Province,China (No.2010R10022)Natural Science Foundation of Zhejiang Province,China(No.Y6110304)National Natural Science Foundation of China(No.20904047)
文摘The structural transition of a single polymer chain with chain length of 100,200 and 300 beads was investigated by parallel tempering MD simulation.Our simulation results can capture the structural change from random coil to orientationally ordered structure with decreasing temperature.The clear transition was observed on the curves of radius of gyration and global orientational order parameter P as the function of temperature,which demonstrated structural formation of a single polymer chain.The linear relationships between three components of square radius of gyration R_(gx)~2,R_(gx)~2,R_(gz)~2 and global orientational order P can be obtained under the structurally transformational process.The slope of the linear relationship between x(or y-axis) component R_(gx)~2(or R_(gy)~2) and P is negative,while that of RL as the function of P is positive.The absolute value of slope is proportional to the chain length.Once the single polymer chain takes the random coil or ordered configuration,the linear relationship is invalid.The conformational change was also analyzed on microscopic scale.The polymer chain can be treated as the construction of rigid stems connecting by flexible loops.The deviation from exponentially decreased behavior of stem length distribution becomes prominent,indicating a stiffening of the chain arises leading to more and more segments ending up in the trans state with decreasing temperature.The stem length N_(tr) is about 21 bonds indicating the polymer chain is ordered with the specific fold length.So,the simulation results,which show the prototype of a liquid-crystalline polymer chain,are helpful to understand the crystallization process of crystalline polymers.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
基金supported by Education Chamber of Henan Province(No.15A150068)
文摘Two novel coordination polymers with helical chains, {[Zn(L)(H2O)]·H2O}n(1) and {[Zn(L)(p-bix)]·3.5H2O}n(2), where H2 L = 5-(4-hydroxypyridinium-1-ylmethyl) isophthalic acid and p-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, have been hydrothermally synthesized, and charac-terized by elemental analysis, powder X-ray diffraction(PXRD), IR, thermal gravimetric analyses(TGA) and also by single-crystal X-ray diffraction. Both complexes 1 and 2 crystallize inmonoclinic, space group P21/c. Compound 1 displays a two-dimensional(2D) structure with two distinct types of helical chains; 2 shows a layered coordination polymer with two types of helical chains and features an interesting 2D→3D interdigitated architecture. Meanwhile, the luminescent properties of 1 and 2 have also been investigated in detail.
基金supported by the National Natural Science Foundation of China (No.20674074).
文摘The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction strengthεand the chain length N was investigated by a finite-size scaling law M = N;[a;+a;N;κ+ O((N;κ);)]forεnear the critical adsorption pointε;,i.e.,κ=(ε-ε;)/ε;closes to 0.The critical adsorption point was estimated to beε;=0.93,and the exponentsφ= 0.49 and l/v= 0.57.
基金supported by the National Natural Science Foundation of China(No.20874088)
文摘The number of configurations, c(n, m), of a single chain with length n attached to a flat surface with m monomers contacting the surface is exactly enumerated. A fimction of c(n, m) about m and n is obtained. From the function, a scaling law for mean energy of chain is derived, and we estimate the critical point εc = 0.276 and the crossover exponent φ = 0.5. The free energy difference between tethered chain and free chain in dilute solution is also studied, which shows the critical adsorption point is about 0.272 for infinite long chain with φ= 0.5.
基金This work was supported by the National Key Projects for Fundamental Research, "Macromolecular Condensed State" of Ministry of Science and Technology of China.
文摘The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.