期刊文献+
共找到3,726篇文章
< 1 2 187 >
每页显示 20 50 100
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
1
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/al 6063/al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Fabrication of bamboo-inspired continuous carbon fiber-reinforced SiC composites via dual-material thermally assisted extrusion-based 3D printing 被引量:2
2
作者 Sai Li Haitian Zhang +8 位作者 Zhongliang Lu Fusheng Cao Ziyao Wang Yan Liu Xiaohui Zhu Shuai Ning Kai Miao Shaoyu Qiu Dichen Li 《Journal of Materials Science & Technology》 2025年第5期92-103,共12页
Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerosp... Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs. 展开更多
关键词 3D printing cf/SiC composites Mechanical properties Electromagnetic wave absorption
原文传递
Comparative analysis of unipolar and bipolar plasma electrolytic oxidation coatings on Al−Mg laminated macro composites 被引量:1
3
作者 Mohsen RASTEGARI Masoud ATAPOUR +2 位作者 Aboozar TAHERIZADEH Amin HAKIMIZAD Maryam RAHMATI 《Transactions of Nonferrous Metals Society of China》 2025年第5期1424-1439,共16页
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech... Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas. 展开更多
关键词 al−Mg laminated macro composite plasma electrolytic oxidation corrosion behavior pulsed waveform
在线阅读 下载PDF
Effect of Temperature on Interface Microstructure and Mechanical Properties of AZ31/Al/Ta Composites Prepared by Vacuum Hot Compression Bonding
4
作者 Yu Zhilei Li Jingli +2 位作者 Han Xiuzhu Li Bairui Xue Zhiyong 《稀有金属材料与工程》 北大核心 2025年第11期2749-2756,共8页
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the... AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength. 展开更多
关键词 AZ31/al/Ta composites microstructure mechanical properties vacuum hot compression bonding
原文传递
Research on edge defects suppression of Mg/Al composite plate rolling:Development of embedded rolling technology
5
作者 Chenchen Zhao Zhiquan Huang +3 位作者 Haoran Zhang Peng Li Tao Wang Qingxue Huang 《Journal of Magnesium and Alloys》 2025年第8期3751-3767,共17页
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre... Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates. 展开更多
关键词 Numerical simulation Damage model Stress triaxiality Mg/al composite plate Embedded composite rolling
在线阅读 下载PDF
Towards understanding the microstructure-mechanical property correlations of multi-level heterogeneous-structured Al matrix composites
6
作者 Yuesong Wu Xiaobin Lin +4 位作者 Xudong Rong Xiang Zhang Dongdong Zhao Chunnian He Naiqin Zhao 《Journal of Materials Science & Technology》 2025年第6期117-123,共7页
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda... 1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6]. 展开更多
关键词 reinforcements agglomeration comprehensive mechanical properties agglomeration reinforcements plastic deformation strength ductility trade off multi level heterogeneous structured al matrix composites microstructure mechanical property correlations al matrix composites amcs
原文传递
Control mechanism of Ni-foil on the interfacial structure and properties of the magnesium alumina laminated composite plate
7
作者 Xianquan Jiang Na yang +6 位作者 Jiangyang Yu Ruihao Zhang Kaihong Zheng Jing Li Bo Feng Xiaowei Feng Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第9期4346-4363,共18页
The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.... The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties. 展开更多
关键词 Mg/al composite plate ROLLING Interface Ni-foil Microstructure Performance
在线阅读 下载PDF
Microstructure and mechanical behavior of Mg/Al composite plates with different thicknesses of Ti foil interlayer
8
作者 Jian Li Bo Feng +4 位作者 Xiaowei Feng Xianhua Chen Kaihong Zheng Xianquan Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第7期3237-3251,共15页
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The... In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing. 展开更多
关键词 Mg/al composite plate Ti foil INTERFACE Mechanical behavior MICROSTRUCTURE
在线阅读 下载PDF
Effects of Different Cooling Processes on the Structure and Properties of Aluminum/Steel Composite Plate
9
作者 Yufei Zhu Runwu Jiang +2 位作者 Chao Yu Yuhua Wu Hong Xiao 《Chinese Journal of Mechanical Engineering》 2025年第1期220-232,共13页
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa... The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture. 展开更多
关键词 al/steel composite plate Cooling method MICROSTRUCTURE Shear strength
在线阅读 下载PDF
Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
10
作者 Wenxia Zhang Weixia Shen +7 位作者 Chao Fang Ye Wang Yuewen Zhang Liangchao Chen Qianqian Wang Kenan Li Biao Wan Zhuangfei Zhang 《Chinese Physics B》 2025年第7期281-288,共8页
Improving the thermal conductivity(TC)of diamond–metal composites has always been a significant challenge in the field of thermal management.In this paper,diamond/Al composites are systematically studied,and the infl... Improving the thermal conductivity(TC)of diamond–metal composites has always been a significant challenge in the field of thermal management.In this paper,diamond/Al composites are systematically studied,and the influence of the holding time(10–120 min)on interface structure and TC is discussed.The results of this research show that longterm thermal diffusion sintering can achieve dense interfacial bonding in diamond/Al composites,enhancing their TC.Diamond/Al composites with 50 vol%of 900μm diamond attain the highest TC value of 888.73 W·m^(-1)·K^(-1)under sintering conditions of 650?C,50 MPa,and 120 min—nearly 92%of the theoretical value predicted by the Maxwell model.This study establishes that high TC can be achieved through long-term thermal diffusion alone,without the need for complex diamond surface coating or substrate alloying. 展开更多
关键词 diamond/al composites thermal conductivity interfacial bonding
原文传递
Heterogeneous lamellar structure dominated mechanical properties optimization in ARBed Al alloy laminated metal composites
11
作者 Tai-qian MO Hua-qiang XIAO +3 位作者 Cun-hong YIN Bo LIN Xue-jian WANG Kai MA 《Transactions of Nonferrous Metals Society of China》 2025年第10期3203-3217,共15页
1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was in... 1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was investigated by microstructural characterization,mechanical property tests and in-situ fracture morphology observations.The results show that microstructural differences between the constituent layers are present in the Al/Al LMCs after various numbers of ARB cycles.Compared with rolled 2560-layered Al/Al LMCs with 37.5%and 50.0%rolling reductions,those with 62.5%rolling reductions allow for more effective improvements in the mechanical properties after annealing treatment due to their relatively high mechanical incompatibility across the interface.During tensile deformation,with the increased magnitude of incompatibility in the 2560-layered Al/Al LMC with a heterogeneous lamellar structure,the densities of the geometrically necessary dislocations(GNDs)increase to accommodate the relatively large strain gradient,resulting in considerable back stress strengthening and improved mechanical properties. 展开更多
关键词 al/al laminated metal composites heterogeneous lamellar structure geometrically necessary dislocations(GNDs) back stress strengthening
在线阅读 下载PDF
Interfacial structure and mechanical properties of Al/Cu laminated composite fabricated by hot press sintering
12
作者 Kai-qiang SHEN Liang CHEN +2 位作者 Li-hua QIAN Biao-hua QUE Cun-sheng ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第8期2484-2499,共16页
Al/Cu laminate composite was fabricated based on hot press sintering using Cu sheet and Al powders as raw materials.The effects of sintering parameters on interfacial structure and mechanical properties were investiga... Al/Cu laminate composite was fabricated based on hot press sintering using Cu sheet and Al powders as raw materials.The effects of sintering parameters on interfacial structure and mechanical properties were investigated.The results revealed that a uniform Al/Cu interface with excellent bonding quality was achieved.The thickness of intermetallic compounds(IMCs)reached 33.88μm after sintering at 620℃for 2 h,whereas it was only 14.88μm when sintered at 600℃for 1 h.AlCu phase was developed through the reaction between Al4Cu9 and Al2Cu with prolonging sintering time,and an amorphous oxide strip formed at AlCu/Al4Cu9 interface.Both the grain morphology and interfacial structure affected the tensile strength of Al/Cu laminate,whereas the mode of tensile fracture strongly relied on the interfacial bonding strength.The highest tensile strength of 151.1 MPa and bonding strength of 93.7 MPa were achieved after sintering at 600℃for 1 h. 展开更多
关键词 al/Cu laminated composite INTERFACE intermetallic compounds bonding strength mechanical properties
在线阅读 下载PDF
Effect of Rotating Magnetic Field on the Microstructure and Shear Property of Al/Steel Bimetallic Composite by Compound Casting
13
作者 Weize Lv Guowei Zhang +3 位作者 Heqian Song Dan Zhang Shiyuan Liu Hong Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第2期276-286,共11页
Al/steel bimetallic composites were prepared by compound casting,and the effects of the rotating magnetic field on the interfacial microstructure and shear property of bimetallic composite was investigated.The applica... Al/steel bimetallic composites were prepared by compound casting,and the effects of the rotating magnetic field on the interfacial microstructure and shear property of bimetallic composite was investigated.The application of rotating magnetic field refined the grain structure of the Al alloy matrix,changed the eutectic Si morphology from coarse lath to needle-like.The rotating magnetic field improved the temperature field and solute distribution of the Al alloy melt,enriched a layer of Si at the interface,and suppressed the growth of intermetallic compounds,the thickness of the interface layer decreased from 44.9μm to 22.8μm.The interfacial intermetallic compounds consisted ofη-Al_(5)Fe_(2),θ-Al_(13)Fe_(4),τ6-Al_(4.5)FeSi,τ_(5)-Al_(8)Fe_(2)Si andτ_(3)-Al_(2)FeSi,and the addition of the rotating magnetic field did not change phase composition.The rotating magnetic field improved the stress distribution within the interfacial intermetallic compounds,the presence of high-angle grain boundaries retarded crack extension,and the shear strength was enhanced from 31.27±3 MPa to 52.70±4 MPa.This work provides a feasible method for preparing Al/steel bimetallic composite with good bonding property. 展开更多
关键词 al/steel bimetallic composite Rotating magnetic field Intermetallic compounds Interface Compound casting
原文传递
Physics-based modeling and mechanism of polycrystalline diamond tool wear in milling of 70 vol%Si/Al composite
14
作者 Lianjia Xin Guolong Zhao +3 位作者 Zhiwen Nian Haotian Yang Liang Li Ning He 《International Journal of Extreme Manufacturing》 2025年第5期336-356,共21页
High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal condu... High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal conductivity,wear resistance,and low thermal expansion coefficient.However,the abrasive and adhesive wear caused by the hard silicon reinforcement and the ductile aluminium matrix leads to significant tool wear,decreased machining efficiency,and compromised surface quality.This study combines theoretical analysis and cutting experiments to investigate polycrystalline diamond(PCD)tool wear during milling of 70 vol%Si/Al composite.A key contribution of this work is the development of a tool wear model that incorporates reinforcement particle characteristics,treating them as ellipsoidal structures,which enhances the accuracy of predicting abrasive and adhesive wear mechanisms.The model is based on abrasive and adhesive wear mechanisms,and can analyze the interaction between silicon particles,aluminium matrix,and tool components,thus providing deeper insights into PCD tool wear processes.Experimental validation of the model shows a good agreement with the results,with a mean deviation of approximately 10%.The findings on the tool wear mechanism reveal that,as tool wear progresses,the proportion of abrasive wear increases from 40%in the running-in stage to 75%in the rapid wear stage,while adhesive wear decreases.The optimal machining parameters of 120 m·min^(–1) cutting speed(v_(c))and 0.04 mm·z^(–1) feed rate(f_(z)),result in tool life of 33 min and surface roughness(S_(a))of 2.2μm.The study uncovers the variation patterns of abrasive and adhesive wear during the tool wear process,and the proposed model offers a robust framework for predicting tool wear during the machining of high-volume fraction Si/Al composites.The research findings also offer key insights for optimizing tool selection and machining parameters,advancing both the theoretical understanding and practical application of PCD tool wear. 展开更多
关键词 70 vol%Si/al composite tool wear PCD tools theoretical model mesoscopic feature
在线阅读 下载PDF
Coordinated Regulation of Bonding Interfacial Structure and Mechanical Properties of Al/Mg Alloy Composite Plates by Electrically Assisted Rolling
15
作者 Tingting Zhang Xingrun An +2 位作者 Yan Wang Gongbo Bian Tao Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期246-260,共15页
Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated exc... Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated excellent performance in interfacial bonding effects.However,the influence of different current loading modes on the interfacial recombination process of composite panels varies significantly.In this study,low-frequency electrically assisted rolling was used in the first pass to pre-bond a composite plate at a low reduction rate of 15%.High-frequency electrically assisted rolling was used during the second pass,and Al/Mg alloy composite plates were obtained.The interfacial microstructure and mechanical properties of the composite plate were coordinated regulation by designing the rolling reduction rate.The results showed the interfacial morphology of the alternating distribution of the melt-diffusion layer,diffusion layer,and the formation of a new Al/Mg bonding interface.At the melt-diffusion interface,the irregular intermetallic compounds(IMCs)and the new Al/Mg bonding interface were alternately distributed,and the IMCs contained theα-Mg,Mg17Al12,and Mg2Al3 phases.In addition,an extremely high shear strength of 78.26 MPa was achieved.Adhesion of the Mg alloy matrix was observed on the fracture surface of the Al alloy side.The high shear strength was mainly attributed to the formation of a unique interfacial structure and the appearance of a melt-diffusion layer.Compared to the diffusion-reduction interface,the regular rectangular IMCs and the new Al/Mg bonding interface were alternately distributed,and the IMCs consisted of the Mg17Al12 and Mg2Al3 phases.The shear test results showed that the shear strength of the interface reached 68.69 MPa,and a regular distribution of the Mg alloy matrix with dimples and the Al alloy matrix with a necking zone was observed on the fracture surface of the Al side.Tensile strength test results revealed a maximum value of 316.86 MPa for the Al/Mg alloy composite plate.The tensile and interfacial bonding strengths can be synchronously enhanced by coordinating the regulation of the interfacial structure.This study proposes a new electrically assisted rolling technology that is useful for the fabrication of composite plates with excellent mechanical properties. 展开更多
关键词 al/Mg alloy composite plate Electrically assisted rolling Bonding properties Interfacial structure
在线阅读 下载PDF
On microstructure and room-/high-temperature properties of an Al_(2)O_(3)/Al-Cu-Mn composite
16
作者 Jing-bin Liu Jing-yi Hu +3 位作者 Meng-yu Li Gui-liang Liu Tong Gao Xiang-fa Liu 《China Foundry》 2025年第4期471-479,共9页
An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particle... An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particles,including nano-sizedθ’and T(Al_(20)Cu_(2)Mn_(3))particles after T6 heat treatment,as well as in-situ synthesized nano-sizedγ-Al_(2)O_(3)particles.Tensile tests of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite and the Al-4Cu-0.5Mn base alloy after T6 treatment were carried out at room temperature and elevated temperatures(200°C,300°C,and 400°C).Compared with the base alloy,the yield strength of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite after T6 treatment increases significantly from 187 MPa to 263 MPa at room temperature.Simultaneously,at elevated temperatures,the yield strength is also enhanced,with a yield strength of 52 MPa at 400°C for this composite.The in-situ fabricatedγ-Al_(2)O_(3)particles,mainly distributed along the grain boundaries,are supposed to play the main strengthening role,especially at high temperatures.This work acts as a reference for designing composites for high-temperature applications. 展开更多
关键词 al matrix composite mechanical strength MICROSTRUCTURE al_(2)O_(3)
在线阅读 下载PDF
Intricate interplay between shear stress and extrusion temperature in Mg−Al composite rods
17
作者 Jian-xing ZHAO Chao-wei ZENG +4 位作者 Ting YUAN Wei PENG Zhen-wei SUN Ou ZHANG Hong-jun HU 《Transactions of Nonferrous Metals Society of China》 2025年第1期105-125,共21页
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w... The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress. 展开更多
关键词 Mg−al composite rod texture evolution deformation mechanism intermetallic compound extrusion−shear process
在线阅读 下载PDF
Study on Dry Electrical Discharge Assisted Grinding of SiCp/Al Composite
18
作者 Yanjun Lu Yuming Huang +2 位作者 Xiaobu Liu Rong Cheng Shunda Zhan 《Chinese Journal of Mechanical Engineering》 2025年第1期106-118,共13页
SiC-reinforced aluminum matrix(SiCp/Al)composite is widely utilized in the aerospace,automotive,and electronics industries due to the combination of ceramic hardness and metal toughness.However,the significant dispari... SiC-reinforced aluminum matrix(SiCp/Al)composite is widely utilized in the aerospace,automotive,and electronics industries due to the combination of ceramic hardness and metal toughness.However,the significant disparity in properties between SiC particles and the aluminum matrix results in severe tool wear and diminished surface quality during conventional machining.This study proposes an environmentally friendly and clean dry electrical discharge assisted grinding process as an efficient and low-damage machining method for SiCp/Al.An experimental platform was set up to study the impact of grinding and discharge process parameters on surface quality.The study compared the chip formation mechanism and surface quality between dry electrical discharge assisted grinding and conventional grinding,revealing relationships between surface roughness,grinding force,grinding temperature,and related parameters.The results indicate that the proposed grinding method leads to smaller chip sizes,lower grinding forces and temperatures,and an average reduction of 19.2%in surface roughness compared to conventional grinding.The axial,tangential,and normal grinding forces were reduced by roughly 10.5%,37.8%,and 23.0%,respectively.The optimized process parameters were determined to be N=2500 r/min,vf=30 mm/min,a=10μm,E=15 V,f=5000 Hz,dc=80%,resulting in a surface roughness of 0.161μm. 展开更多
关键词 Dry electrical discharge assisted grinding SiCp/al composite Surface quality Grinding force Grinding temperature
在线阅读 下载PDF
Microstructure evolution and precipitation strengthening behaviors of non-isothermal aged SiC/7xxxAl composite
19
作者 R.Zhang S.Z.Zhu +4 位作者 Z.Y.Liu Y.B.Ke D.Wang B.L.Xiao Z.Y.Ma 《Journal of Materials Science & Technology》 2025年第23期205-217,共13页
Non-isothermal aging(NIA)treatments have presented significant advantages in improving the comprehensive performance and aging hardening efficiency of the 7000 series aluminum alloys,but there is no attention paid to ... Non-isothermal aging(NIA)treatments have presented significant advantages in improving the comprehensive performance and aging hardening efficiency of the 7000 series aluminum alloys,but there is no attention paid to their composites.This study takes a linear heating aging process as an example to reveal the precipitation behaviors of a 15 vol.%SiC/7085Al composite as well as its impact on mechanical properties using differential scanning calorimetry,transmission electron microscopy,small-angle neutron scattering,hardness measurements,and tensile testing.The results indicated the formation of GP(Ⅰ,Ⅱ)zones,η’andηprecipitates in sequence,leading to the hardness and strength initially increasing and then decreasing with rising NIA temperatures.The maximums were reached at 183℃,corresponding to the appearance ofη’precipitates in large quantities.Owing to the rapid temperature rise during the NIA process,the precipitates entered the coarsening and redissolution stage before they were entirely formed,resulting in reduced peak strength compared to the T6 treatment.The composite exhibited a more significant reduction in strength than the 7085Al alloy because:(i)the annihilation of vacancies suppressed the formation of GPII zones,thereby weakening their transition toη’precipitates;(ii)quenching dislocations promoted the coarsening of precipitates.An improved NIA process,incorporating both heating and cooling aging treatments,was effectively designed with the assistance of in-situ SANS technology to address this issue,which allows for achieving strength comparable to that after the T6 treatment with only 15%of the aging time consumption.This research fills the gap in investigating the NIA precipitation behaviors of aluminum matrix composites,providing guidance for the formulation of NIA schedules. 展开更多
关键词 SiC/7 xxx al composite Non-isothermal aging Mechanical properties Precipitation strengthening Small-angle neutron scattering
原文传递
Fabrication of Ti/Mg bimetal composite in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration
20
作者 Yuan-bing WU Jian-hua ZHAO +2 位作者 Chao WEI Cheng GU Ya-jun WANG 《Transactions of Nonferrous Metals Society of China》 2025年第8期2572-2585,共14页
Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Compara... Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Comparative analysis of the tensile and compressive properties was conducted between the composite and its constituent materials(Ti−6Al−4V lattice structure and AZ91D matrix).The tensile strength of the composite(95.9 MPa)was comparable to that of the Ti−6Al−4V lattice structure(94.4 MPa)but lower than that of the AZ91D alloy(120.8 MPa)due to gaps at the bimetal interfaces hindering load transfer during tension.The composite exhibited greater elongation(1.7%)compared to AZ91D(1.4%)alloy but less than the Ti−6Al−4V lattice structure(2.6%).The compressive performance of the composite outperformed that of the Ti−6Al−4V lattice structure,underscoring the significance of the AZ91D alloy in compressive deformation.Fracture analysis indicated that the predominant failure reasons in both the composite and lattice structures were attributed to the breakage of lattice struts at nodes caused by the stress concentration. 展开更多
关键词 Ti−6al−4V lattice structure Ti−6al−4V/AZ91D bimetal composite melt infiltration mechanical properties FRACTOGRAPHY
在线阅读 下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部