With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggr...With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggregated SIDCs have emerged as promising demand response(DR)resources for future power distribution systems.This paper presents an innovative framework for assessing capacity value(CV)by aggregating SIDCs participating in DR programs(SIDC-DR).Initially,we delineate the concept of CV tailored for aggregated SIDC scenarios and establish a metric for the assessment.Considering the effects of the data load dynamics,equipment constraints,and user behavior,we developed a sophisticated DR model for aggregated SIDCs using a data network aggregation method.Unlike existing studies,the proposed model captures the uncertainties associated with end tenant decisions to opt into an SIDC-DR program by utilizing a novel uncertainty modeling approach called Z-number formulation.This approach accounts for both the uncertainty in user participation intentions and the reliability of basic information during the DR process,enabling high-resolution profiling of the SIDC-DR potential in the CV evaluation.Simulation results from numerical studies conducted on a modified IEEE-33 node distribution system confirmed the effectiveness of the proposed approach and highlighted the potential benefits of SIDC-DR utilization in the efficient operation of future power systems.展开更多
As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utili...As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.展开更多
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufactur...Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs) are the most common mesenchymal tumor type in the gastrointestinal system. Presently, various classification systems to prognosticate GISTs have been proposed.AIM To e...BACKGROUND Gastrointestinal stromal tumors(GISTs) are the most common mesenchymal tumor type in the gastrointestinal system. Presently, various classification systems to prognosticate GISTs have been proposed.AIM To evaluate the application value of four different risk stratification systems for GISTs.METHODS Patients who were diagnosed with GISTs and underwent surgical resection at four hospitals from 1998 to 2015 were identified from a database. Risk of recurrence was stratified by the modified National Institute of Health(NIH)criteria, the Armed Forces Institute of Pathology(AFIP) criteria, the Memorial Sloan Kettering Cancer Center(MSKCC) prognostic nomogram, and the contour maps. Receiver operating characteristic(ROC) curves were established to compare the four abovementioned risk stratification systems based on the area under the curve(AUC).RESULTS A total of 1303 patients were included in the study. The mean age of the patients was 55.77 ± 13.70 yr; 52.3% of the patients were male. The mean follow-up period was 64.91 ± 35.79 mo. Approximately 67.0% the tumors were located in the stomach, and 59.5% were smaller than 5 cm; 67.3% of the patients had a mitotic count ≤ 5/50 high-power fields(HPFs). Thirty-four tumors ruptured before and during surgery. Univariate analysis demonstrated that tumor size > 5 cm(P <0.05), mitotic count > 5/50 HPFs(P < 0.05), non-gastric location(P < 0.05), and tumor rupture(P < 0.05) were significantly associated with increased recurrence rates. According to the ROC curve, the AFIP criteria showed the largest AUC(0.754).CONCLUSION According to our data, the AFIP criteria were associated with a larger AUC than the NIH modified criteria, the MSKCC nomogram, and the contour maps, which might indicate that the AFIP criteria have better accuracy to support therapeutic decision-making for patients with GISTs.展开更多
In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magne...In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.展开更多
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo...Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.展开更多
Surgical robots have been widely used in diferent procedures to improve and facilitate the surgery.However,there is no robot designed for endometrial regeneration surgery,which is a new therapy for restoring fertility...Surgical robots have been widely used in diferent procedures to improve and facilitate the surgery.However,there is no robot designed for endometrial regeneration surgery,which is a new therapy for restoring fertility in women using stem cells.Endometrial regeneration surgery requires processing of the endometrium and transplantation of stem cells with minimal trauma to the uterus.In this paper,we introduce a surgical robotic system that consists of a dexterous hysteroscope,supporting arm,and additional novel instruments to facilitate the operation and decrease trauma to the uterus.Remote center of motion(RCM)constraint is required to protect the cervix of the uterus.First,the supporting arm and hysteroscope are controlled separately in kinematics to ensure that the RCM constraint and hysteroscope’s shape and posture are predictable.Then,a task-decoupled method is used to improve the robustness of the RCM constraint.Experiments confrm that the proposed method is more robust and achieves higher RCM accuracy.In addition,the master-slave control of a robot with RCM constraint is also verifed.This study proposes the realization of a robot with robust RCM control for endometrial regeneration surgery.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
In this paper we deal with a cubic near-Hamiltonian system whose unperturbed system is a simple cubic Hamiltonian system having a nilpotent center. We prove that the system can have 5 limit cycles by using bifurcation...In this paper we deal with a cubic near-Hamiltonian system whose unperturbed system is a simple cubic Hamiltonian system having a nilpotent center. We prove that the system can have 5 limit cycles by using bifurcation theory.展开更多
The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area...The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area, comparing to normal-scale building, design and operation of effective smoke control system for large space is more than important. In this study, with the analysis model for such a large space as exhibition hall or conference room in conventional center, design of mechanical smoke exhaust system was conducted based on currently-available design standard which was then followed by numerical analysis of the design using 3D numerical analysis method. For conference room at 2.0 MW heat release rate, 99,173 CMH flow rate is required, if smoke layer is maintained at 60% of the floor height and for exhibition hall at 8.8 MW with 80% of floor height, flow rate required is 219,802 CMH, which are incorporated into the design. In view of 3D numerical analysis, accuracy of the design according to algebraic expression is sufficient.展开更多
Talent cultivation is the primary task of universities.Local general undergraduate colleges and universities should adhere to the basic guidelines of systematization,practicality and integration,continuously explore t...Talent cultivation is the primary task of universities.Local general undergraduate colleges and universities should adhere to the basic guidelines of systematization,practicality and integration,continuously explore the concept of"studentcentered"talent cultivation,and build a threedimensional practical teaching system from three aspects:strengthening the planning and design of the three-dimensional practical teaching system;building an internal and external practical teaching platform;and improving the evaluation and guarantee system of practical teaching quality.The system of practical teaching quality evaluation and guarantee is improved.In order to improve the cultivation ability of applied talents in all aspects.展开更多
Transgression networks in metropolitan centers need to supply a large quantity of power in a reliable manner to vital loads that are located within. A transmission network supplying such an important area must have a ...Transgression networks in metropolitan centers need to supply a large quantity of power in a reliable manner to vital loads that are located within. A transmission network supplying such an important area must have a high standard of reliability. Therefore, those transmission systems require a special form of redundancy in order to prevent sustained outages after severe contingencies such as multiple faults. This paper outlines different forms of redundancy, and the fundamental options for designing a metropolitan network based on different forms of redundancy are illustrated. Relative merits and drawbacks of network designs based on each form of redundancy are also shown.展开更多
In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conject...In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.展开更多
We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss...We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss Legendre’s quadrature rules and time stepsize respectively to overcome the energy drift problem in traditional energy-preserving algorithms.These new adaptive algorithms are second order,and their algebraic order is carefully studied.Numerical results show that the global energy errors are bounded to the machine precision over long time using these adaptive algorithms without massive extra computation cost.展开更多
Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nit...Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nitrogen-vacancy center electron spin enables fast operations for its strong coupling to the control field, whereas the nuclear spins preserve the coherence for their weak coupling to the environment. In this paper, we describe a strategy to achieve time-optimal control of the Carbon-13 nuclear spin qubit by alternating controlling the nitrogen-vacancy center electron spin as an actuator. We transform the qubit gate operation into a switched system. By using the maximum principle, we study the minimum time control of the switched system and obtain the time-optimal control of the qubit gate operation. We show that the X gate and Y gate operations are within 10μs while the fidelity reaches 0.995.展开更多
Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuse...Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.展开更多
Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) ...Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.展开更多
Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements ...Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements of the test.Based on the theory of seismic location,the location of underground explosion center was studied.The applicability of seismic location theory to the location of underground explosion center was verified by simulating the underground explosion with LS-DYNA simulation platform.Combined with distributed testing system theory and weighting method,the optimal distribution method of test points was summarized through data analysis.展开更多
According to the subjectivity and fuzziness of analysis on failure mode severity about spindle system of machining center,an analysis model of the failure mode severity of such a system is proposed based on the new fa...According to the subjectivity and fuzziness of analysis on failure mode severity about spindle system of machining center,an analysis model of the failure mode severity of such a system is proposed based on the new fault severity index system, improved analytic hierarchy process( IAHP) and entropy-based fuzzy comprehensive evaluation. IAHP and entropy methods are adopted to determine the comprehensive failure severity index weight. The evaluation result is obtained after the factor set,comment set,weight set,and other parameters are determined,and then the level of risk degree and numerical value order of every spindle system failure mode is given. By taking an example,we verify that the proposed method can quantify the qualitative problem comprehensively,obtain more accurate analysis results,and provide the theoretical reference for mechanization and sequencing of failure mode effect analysis in reliability analysis. The calculation results can also serve as the basis of failure mode,effects,and criticality analysis in the subsequent step.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52177082in part by the Beijing Nova Program under Grant 20220484007.
文摘With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggregated SIDCs have emerged as promising demand response(DR)resources for future power distribution systems.This paper presents an innovative framework for assessing capacity value(CV)by aggregating SIDCs participating in DR programs(SIDC-DR).Initially,we delineate the concept of CV tailored for aggregated SIDC scenarios and establish a metric for the assessment.Considering the effects of the data load dynamics,equipment constraints,and user behavior,we developed a sophisticated DR model for aggregated SIDCs using a data network aggregation method.Unlike existing studies,the proposed model captures the uncertainties associated with end tenant decisions to opt into an SIDC-DR program by utilizing a novel uncertainty modeling approach called Z-number formulation.This approach accounts for both the uncertainty in user participation intentions and the reliability of basic information during the DR process,enabling high-resolution profiling of the SIDC-DR potential in the CV evaluation.Simulation results from numerical studies conducted on a modified IEEE-33 node distribution system confirmed the effectiveness of the proposed approach and highlighted the potential benefits of SIDC-DR utilization in the efficient operation of future power systems.
文摘As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.
基金Supported by National Natural Science Foundation of China(Grant No.61272428)PhD Programs Foundation of Ministry of Education of China(Grant No.20120002110067)
文摘Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.
基金the State Key Project of Research and Development Plan,No.2017YFC0108300 and No.2017YFC01083032018 Special Funds for the Cultivation of Guangdong College Students'Scientific and Technological Innovation(Climbing Program Special Funds),No.pdjha0094
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs) are the most common mesenchymal tumor type in the gastrointestinal system. Presently, various classification systems to prognosticate GISTs have been proposed.AIM To evaluate the application value of four different risk stratification systems for GISTs.METHODS Patients who were diagnosed with GISTs and underwent surgical resection at four hospitals from 1998 to 2015 were identified from a database. Risk of recurrence was stratified by the modified National Institute of Health(NIH)criteria, the Armed Forces Institute of Pathology(AFIP) criteria, the Memorial Sloan Kettering Cancer Center(MSKCC) prognostic nomogram, and the contour maps. Receiver operating characteristic(ROC) curves were established to compare the four abovementioned risk stratification systems based on the area under the curve(AUC).RESULTS A total of 1303 patients were included in the study. The mean age of the patients was 55.77 ± 13.70 yr; 52.3% of the patients were male. The mean follow-up period was 64.91 ± 35.79 mo. Approximately 67.0% the tumors were located in the stomach, and 59.5% were smaller than 5 cm; 67.3% of the patients had a mitotic count ≤ 5/50 high-power fields(HPFs). Thirty-four tumors ruptured before and during surgery. Univariate analysis demonstrated that tumor size > 5 cm(P <0.05), mitotic count > 5/50 HPFs(P < 0.05), non-gastric location(P < 0.05), and tumor rupture(P < 0.05) were significantly associated with increased recurrence rates. According to the ROC curve, the AFIP criteria showed the largest AUC(0.754).CONCLUSION According to our data, the AFIP criteria were associated with a larger AUC than the NIH modified criteria, the MSKCC nomogram, and the contour maps, which might indicate that the AFIP criteria have better accuracy to support therapeutic decision-making for patients with GISTs.
基金National Natural Science Foundation of China(Nos.51635011,61503346,51727808)National Science Foundation of Shanxi Province(No.201701D121080)
文摘In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.
文摘Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.
基金Supported by National Natural Science Foundation of China(Grant No.61873257)CAS Interdisciplinary Innovation Team(Grant No.JCTD-2020-11)Science and Technology Program Project of Liaoning Province of China(Grant Nos.2021JH1/10400045,2021JH2/10300058).
文摘Surgical robots have been widely used in diferent procedures to improve and facilitate the surgery.However,there is no robot designed for endometrial regeneration surgery,which is a new therapy for restoring fertility in women using stem cells.Endometrial regeneration surgery requires processing of the endometrium and transplantation of stem cells with minimal trauma to the uterus.In this paper,we introduce a surgical robotic system that consists of a dexterous hysteroscope,supporting arm,and additional novel instruments to facilitate the operation and decrease trauma to the uterus.Remote center of motion(RCM)constraint is required to protect the cervix of the uterus.First,the supporting arm and hysteroscope are controlled separately in kinematics to ensure that the RCM constraint and hysteroscope’s shape and posture are predictable.Then,a task-decoupled method is used to improve the robustness of the RCM constraint.Experiments confrm that the proposed method is more robust and achieves higher RCM accuracy.In addition,the master-slave control of a robot with RCM constraint is also verifed.This study proposes the realization of a robot with robust RCM control for endometrial regeneration surgery.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
文摘In this paper we deal with a cubic near-Hamiltonian system whose unperturbed system is a simple cubic Hamiltonian system having a nilpotent center. We prove that the system can have 5 limit cycles by using bifurcation theory.
文摘The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area, comparing to normal-scale building, design and operation of effective smoke control system for large space is more than important. In this study, with the analysis model for such a large space as exhibition hall or conference room in conventional center, design of mechanical smoke exhaust system was conducted based on currently-available design standard which was then followed by numerical analysis of the design using 3D numerical analysis method. For conference room at 2.0 MW heat release rate, 99,173 CMH flow rate is required, if smoke layer is maintained at 60% of the floor height and for exhibition hall at 8.8 MW with 80% of floor height, flow rate required is 219,802 CMH, which are incorporated into the design. In view of 3D numerical analysis, accuracy of the design according to algebraic expression is sufficient.
文摘Talent cultivation is the primary task of universities.Local general undergraduate colleges and universities should adhere to the basic guidelines of systematization,practicality and integration,continuously explore the concept of"studentcentered"talent cultivation,and build a threedimensional practical teaching system from three aspects:strengthening the planning and design of the three-dimensional practical teaching system;building an internal and external practical teaching platform;and improving the evaluation and guarantee system of practical teaching quality.The system of practical teaching quality evaluation and guarantee is improved.In order to improve the cultivation ability of applied talents in all aspects.
文摘Transgression networks in metropolitan centers need to supply a large quantity of power in a reliable manner to vital loads that are located within. A transmission network supplying such an important area must have a high standard of reliability. Therefore, those transmission systems require a special form of redundancy in order to prevent sustained outages after severe contingencies such as multiple faults. This paper outlines different forms of redundancy, and the fundamental options for designing a metropolitan network based on different forms of redundancy are illustrated. Relative merits and drawbacks of network designs based on each form of redundancy are also shown.
基金Supported by the National Natural Science Foundation of China(62173292,12171418).
文摘In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.
基金supported by National Natural Science Foundation of China(Nos.11901564,11775222 and 12171466)Geo-Algorithmic Plasma Simulator(GAPS)Project。
文摘We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics,which plays a key role in magnetized plasmas.The adaptive scheme is applied to the Gauss Legendre’s quadrature rules and time stepsize respectively to overcome the energy drift problem in traditional energy-preserving algorithms.These new adaptive algorithms are second order,and their algebraic order is carefully studied.Numerical results show that the global energy errors are bounded to the machine precision over long time using these adaptive algorithms without massive extra computation cost.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61227902, 61573343) and the National Center for Mathematics and Interdisciplinary Sciences, CAS.
文摘Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nitrogen-vacancy center electron spin enables fast operations for its strong coupling to the control field, whereas the nuclear spins preserve the coherence for their weak coupling to the environment. In this paper, we describe a strategy to achieve time-optimal control of the Carbon-13 nuclear spin qubit by alternating controlling the nitrogen-vacancy center electron spin as an actuator. We transform the qubit gate operation into a switched system. By using the maximum principle, we study the minimum time control of the switched system and obtain the time-optimal control of the qubit gate operation. We show that the X gate and Y gate operations are within 10μs while the fidelity reaches 0.995.
基金the National Natural Science Foundationof China (Grant No. 12265022)the Natural ScienceFoundation of Inner Mongolia Autonomous Region, China(Grant No. 2021MS01012)the Inner Mongolia FundamentalResearch Funds for the Directly Affiliated Universities(Grant No. 2023RCTD014).
文摘Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.
基金Project supported by the National Fundamental Research Program of China(Grant No.2010CB923202)the Fundamental Research Funds for the Central Universities,Chinathe National Natural Science Foundation of China(Grant Nos.61177085,61205117,and 61377097)
文摘Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.
基金Open Research Fund for Key Laboratory of Damage Technology(No.DXMBJJ2017-12)。
文摘Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements of the test.Based on the theory of seismic location,the location of underground explosion center was studied.The applicability of seismic location theory to the location of underground explosion center was verified by simulating the underground explosion with LS-DYNA simulation platform.Combined with distributed testing system theory and weighting method,the optimal distribution method of test points was summarized through data analysis.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51275205)
文摘According to the subjectivity and fuzziness of analysis on failure mode severity about spindle system of machining center,an analysis model of the failure mode severity of such a system is proposed based on the new fault severity index system, improved analytic hierarchy process( IAHP) and entropy-based fuzzy comprehensive evaluation. IAHP and entropy methods are adopted to determine the comprehensive failure severity index weight. The evaluation result is obtained after the factor set,comment set,weight set,and other parameters are determined,and then the level of risk degree and numerical value order of every spindle system failure mode is given. By taking an example,we verify that the proposed method can quantify the qualitative problem comprehensively,obtain more accurate analysis results,and provide the theoretical reference for mechanization and sequencing of failure mode effect analysis in reliability analysis. The calculation results can also serve as the basis of failure mode,effects,and criticality analysis in the subsequent step.