期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Effect of a Carbon Fibre-steel Fibre-graphite Conductive Filler on the Electrothermal Properties of Cementitious Materials
1
作者 FAN Yanan WEI Hong +1 位作者 ZHENG Hongyong DU Hongxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期141-151,共11页
Carbon fibre,steel fibre and graphite were used as conductive fillers to prepare cementitious materials with excellent electrothermal properties.The electrically conductive cementitious materials with different volume... Carbon fibre,steel fibre and graphite were used as conductive fillers to prepare cementitious materials with excellent electrothermal properties.The electrically conductive cementitious materials with different volume dosages were analysed through compressive and flexural strength,electrochemical impedance spectroscopy and temperature rise tests.An equivalent circuit model was established to study the electrically conductive heat generation mechanism in the electrically conductive cementitious composites.The results indicate that the mechanical properties of cementitious composite materials with a ternary conductive phase are better than those of pristine cementitious materials because the fibrous filler improves their mechanical properties.However,the incorporation of graphite in the material reduces its strength.Introducing fibrous and point-like conductive phase materials into the cementitious material enhances the overall conductive pathway and considerably reduces the electrical resistance of the cementitious material,enhancing its conductive properties.The volume ratios of carbon fibre,steel fibre and graphite that achieve an optimal complex doping in the cementitious material were 0.35%,0.6%and 6%,respectively.This was determined using the mutation point of each circuit element parameter as the percolation threshold.In addition,at a certain safety voltage,there is a uniform change between the internal and surface temperatures of the conductive cementitious material,and the heating effect in this materialis is considerably better than that in the pristine cementitious material. 展开更多
关键词 cementitious composites conductive fillers electrothermal properties electrochemical impedance spectroscopy
原文传递
Machine Learning Prediction and Feature Impact Analysis of Durability Performance of Solid Waste-Alkali Activated Cementitious Materials
2
作者 WEI Wei DING Yongjie +2 位作者 ZHOU Yongxiang WANG Jiaojiao WANG Yanghui 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1330-1348,共19页
This study applied machine learning methods to predict the durability performance(specifically shrinkage and freeze-thaw resistance)of solid waste-activated cementitious materials.It also offered insights for optimizi... This study applied machine learning methods to predict the durability performance(specifically shrinkage and freeze-thaw resistance)of solid waste-activated cementitious materials.It also offered insights for optimizing material formulations through feature impact analysis.The study collected a total of 130 sets of shrinkage data and 106 sets of freeze-thaw data,establishing various models,including BP,GA-BP,SVM,RF,RBF,and LSTM.The results revealed that the SVM model performed the best on the test dataset.It achieved an R^(2) of 0.9358 for shrinkage prediction,with MAE and RMSE values of 0.4644 and 0.6254,respectively.Regarding freeze-thaw quality loss prediction,the R^(2) was 0.9178,with MAE and RMSE values of 0.3139 and 0.5328,respectively.The study analyzed the impact of different features on the outcomes using the SHAP method,highlighting that the alkaline activator dosage,Al_(2)O_(3),SiO_(2),and water glass modulus were critical factors influencing shrinkage,while CaO,water-cement ratio,water,and Al_(2)O_(3) were crucial for freeze-thaw resistance.By investigating feature interactions through single-factor and two-factor analysis,the study proposed recommendations for optimizing material formulations.This research validated the efficacy of machine learning in predicting the durability of solid waste cementitious materials and offered insights for material optimization through feature impact analysis,thereby laying the groundwork for the development of related materials. 展开更多
关键词 machine learning alkaline activation solid waste cementitious materials SHAP DURABILITY
原文传递
Hydration mechanism and microstructure characteristics of modified magnesium slag alkali-activated coal-fired slag based cementitious materials
3
作者 SUN Wei-ji LIU Lang +4 位作者 ZHAO Yuan-yuan FANG Zhi-yu LYU Yong-zhe XIE Geng SHAO Cheng-cheng 《Journal of Central South University》 2025年第6期2148-2169,共22页
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value... As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling. 展开更多
关键词 coal-fired slag ALKALI-ACTIVATED hydration characteristics pore structure composite cementitious material
在线阅读 下载PDF
Feasibility Study on the Application of Heat-Treated Electrolytic Manganese Residue in Cementitious Materials
4
作者 FENG Qiong JIA Zhenyu +3 位作者 QIAO Hongxia LI Yanqi FU Yong CHEN Kefan 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1407-1417,共11页
To investigate the feasibility of applying electrolytic manganese residue(EMR)in cementitious materials,an approach combining high-temperature activation(200,400,600,800 and 1000℃)and mechanical grinding(5 min)was ad... To investigate the feasibility of applying electrolytic manganese residue(EMR)in cementitious materials,an approach combining high-temperature activation(200,400,600,800 and 1000℃)and mechanical grinding(5 min)was adopted to stimulate the EMR activity.We analyzed the effect of calcination temperature on the performance of EMR with the aid of X-ray diffraction(XRD),specific surface area test(BET)and pozzolanic activity test,explored the effects of EMR activation temperature and content(0%,10%,15% and 20%)on the setting time,soundness,drying shrinkage,compressive strength,hydration products of cement-EMR mixed slurry,and assessed the effect of cement hydration on the solidification of harmful NH_(4)^(+)-N and Mn^(2+) in EMR.The research results show that high-temperature calcination can lead to the dehydration,decomposition or crystalline phase transformation of the inert sulfate and other substances in EMR,mechanical grinding can improve its particle distribution,and the coupling of the two can effectively enhance the pozzolanic activity of EMR.The decomposition and recombination of aluminum-silica phase at 800℃ optimized the EMR activity,and the strength activity index(SAI)of EMR at 28 d reached up to 95%.Appropriate calcination temperature and EMR content can ensure the workability of the mixed slurry,and when the EMR calcination temperature was 400-1000℃,the setting time of the mixed slurry under different EMR contents satisfied the specification requirements.When the calcination temperature was 600-1000℃ and EMR content was less than 20%,the soundness of the mixed slurry satisfied the specification requirements.The compressive strength of the mixed slurry increased and then decreased with the increase of activated EMR content,when the EMR content was 10%,the compressive strength of all specimens was optimal and higher than the baseline group;when the activation temperature was 800℃,the C-S-H gel in the mixed slurry interconnected with the rod-like Aft and blocked Ca(OH)_(2),and the 28 d compressive strength was increased by 14%compared with that of the baseline group.The solidification rate of Mn^(2+) in EMR by cement hydration was higher than 99%,and that of NH_(4)^(+)-N was higher than 97%.The leaching toxicity after solidification can meet the requirements of toxic emission.The results of the study may provide theoretical basis for the feasibility of the application of EMR in cementitious materials. 展开更多
关键词 cementitious materials electrolytic manganese residue high-temperature activation pozzolanic activity leaching toxicity
原文传递
CO_(2) adsorption behaviour on β-C_(2)S(111) and (100) surfaces: Implications for carbon sequestration in cementitious materials
5
作者 Chongchong Qi Zirou Liu +2 位作者 Dino Spagnoli Danial Jahed Armaghani Xinhang Xu 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2109-2118,共10页
Understanding the differences in CO_(2)adsorption in cementitious material is critical in mitigating the carbon footprint of the construction industry.This study chose the most common β-C_(2)S phase in the industry a... Understanding the differences in CO_(2)adsorption in cementitious material is critical in mitigating the carbon footprint of the construction industry.This study chose the most common β-C_(2)S phase in the industry as the cementitious material,selecting the β-C_(2)S(111)and β-C_(2)S(100)surfaces for CO_(2)adsorption.First-principles calculations were employed to systematically compare the CO_(2)ad-sorption behaviors on both surfaces focusing on adsorption energy,adsorption configurations,and surface reconstruction.The comparis-on of CO_(2)and H2O adsorption behaviors on the β-C_(2)S(111)surface was also conducted to shed light on the influence of CO_(2)on cement hydration.The adsorption energies of CO_(2)on the β-C_(2)S(111)and β-C_(2)S(100)surfaces were determined as-0.647 and-0.423 eV,respect-ively,suggesting that CO_(2)adsorption is more energetically favorable on the β-C_(2)S(111)surface than on the β-C_(2)S(100)surface.The ad-sorption energy of H2O on the β-C_(2)S(111)surface was-1.588 eV,which is 0.941 eV more negative than that of CO_(2),implying that β-C_(2)S tends to become hydrated before reacting with CO_(2).Bader charges,charge density differences,and the partial density of states were ap-plied to characterize the electronic properties of CO_(2)and H2O molecules and those of the surface atoms.The initial Ca/O sites on the β-C_(2)S(111)surface exhibited higher chemical reactivity due to the greater change in the average number of valence electrons in the CO_(2)ad-sorption.Specifically,after CO_(2)adsorption,the average number of valence electrons for both the Ca and O atoms increased by 0.002 on the β-C_(2)S(111)surface,while both decreased by 0.001 on the β-C_(2)S(100)surface.In addition,due to the lower valence electron number of O atoms,the chemical reactivity of O atoms on the β-C_(2)S(111)surface after H2O adsorption was higher than the case of CO_(2)adsorption,which favors the occurrence of further reactions.Overall,this work assessed the adsorption capacity of the β-C_(2)S surface for CO_(2)mo-lecules,offering a strong theoretical foundation for the design of novel cementitious materials for CO_(2)capture and storage. 展开更多
关键词 CO_(2)adsorption cementitious materials first-principles calculations carbon sequestration
在线阅读 下载PDF
Effect of Fly Ash Contents on the Durability and Mechanical Properties of Recycled Fine Aggregate High Ductility Cementitious Composites
6
作者 WANG Xinjie BYIRINGIRO Olivier +3 位作者 YANG Jiagai ZHU Pinghua YAN Xiancui LIU Hui 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1477-1487,共11页
The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully rep... The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully replace natural fine aggregates was investigated.The results indicated that a 50% FA content significantly increased the compressive strength of RFA-HDCC by 13.93%.However,a?further increase in FA content led to a drastic decrease.The increased fly ash content substantially reduced the flexural and tensile strength;however,it markedly increased the matrix strain capacity,resulting in a 53.73% increase in the peak strain when FA was raised to 70%.Regarding durability,the increase in FA content negatively affected the chloride ion permeability and carbonation resistance.However,the increase in FA content initially improved the frost resistance of RFA-HDCC,peaking at 50% FA and deteriorating at 60% and 70% FA content. 展开更多
关键词 high ductility cementitious composites DURABILITY fly ash recycled fine aggregate
原文传递
Conversion of Metallurgical Waste:The Impact of Reduction Ferrum Extraction on the Phase Composition and Cementitious Materials Reactivity of Jinchuan Ferronickel Slag
7
作者 SONG Yanning FENG Qiong +2 位作者 QIAO Hongxia WEI Chao ZHENG Jianghua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期546-557,共12页
In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and h... In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn. 展开更多
关键词 ferronickel slag reduction ferrum extraction physical and chemical properties cementitious material
原文传递
Influence of Steel Slag Content on the Characteristics of"One-step"Alkali-activated Composite Cementitious Materials
8
作者 DING Rui LI Han +3 位作者 TIAN Hao WANG Hongen CHEN Yuqi LI Wenfu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1105-1112,共8页
A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite ceme... A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite cementitious material known as alkali-activated steel slag composite cementitious material(ASCM)by the"one-step method".The impacts of cementitious components,alkali activator modulus,and Na_(2)O%on the mechanical strength were investigated,and the hydration products and hydration kinetics of ASCM were analyzed.The experimental results reveal that XRD,FTIR,SEM,EDS,and exothermic heat of hydration show that when GGBS:MK:SS=60wt%:10wt%:30wt%,the activator modulus is 1.2,and the alkali content is 5.5wt%,the 28 d flexural strength of ASCM mortar is 12.6 MPa,and the compressive strength is 53.3 MPa,the hydration products consist of C-S-H gel/C-A-S-H gel,mullite(3Al_(2)O_(3)-2SiO_(2)),calcite(CaCO_(3)),quartz,etc.ASCM has a large initial hydration exotherm rate but a small cumulative exotherm. 展开更多
关键词 solid activator "one-step"alkali-activated composite cementitious materials steel slag
原文传递
Leaching Law of Ferrous Extraction Tailing of Nickel Slag-ordinary Portland Cement Composite Cementitious System under Different Influencing Factors
9
作者 SONG Yanning QIAO Hongxia +3 位作者 FENG Qiong WEI Chao SUN Xiaoxia ZHENG Jianghua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1091-1104,共14页
In order to explore the leaching law of different elements in the composite cementitious system composed of ferrous extraction tailing of nickel slag(FETNS)and ordinary Portland cement(OPC),element leaching test under... In order to explore the leaching law of different elements in the composite cementitious system composed of ferrous extraction tailing of nickel slag(FETNS)and ordinary Portland cement(OPC),element leaching test under different influencing factors was designed with the aid of ICP-OES,XRD,and SEM-EDS.The experimental results show that,with the extension of leaching time,the continuous hydration reaction in the system enables the leaching amount of Si,Al,Mg,and Ca elements to show an overall downward trend.In the alkaline environment,the more sufficient hydration reaction consumes more soluble elements,resulting in a significantly smaller leaching amount than that in the neutral environment.Temperature is also an important factor affecting the leaching of elements.The rise of temperature promotes the dissolution of amorphous phases Si,Al,and Mg in the system,leading to increased leaching amount and higher consumption of C_(2)S and C_(3)S,generating more reaction products.In addition,the content and fineness of FETNS also have a significant effect on the element leaching of the composite cementitious system.More importantly,this paper clarifies the leaching safety of internal heavy metal elements when FETNS is used under the above conditions,which provides a scientific guarantee for the safe and efficient application of FETNS in building materials. 展开更多
关键词 ferrous extraction tailing of nickel slag composite cementitious system element leaching
原文传递
Exploring the potential of olivine-containing copper-nickel slag for carbon dioxide mineralization in cementitious materials 被引量:1
10
作者 Qianqian Wang Zequn Yao +1 位作者 Lijie Guo Xiaodong Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期562-573,共12页
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi... Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals. 展开更多
关键词 copper-nickel slag FAYALITE CO_(2)sequestration cementitious material ADMIXTURES carbonation conditions
在线阅读 下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials 被引量:1
11
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
原文传递
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia 被引量:1
12
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
在线阅读 下载PDF
Evaluation of the migration and environmental effects of metal elements within cementitious gangue-fly ash backfill in underground coal mines
13
作者 Xuejie Deng Yuan Jiao +5 位作者 Shicong Li Nan Zhou Yan An Erol Yilmaz Qingxue Zheng Xifeng Liang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1551-1562,共12页
Cementitious gangue-fly ash backfill(CGB)is used as a green mining technology worldwide.However,under the coupled effects of geological stress and groundwater,the metal elements in the CGB tend to migrate into nearby ... Cementitious gangue-fly ash backfill(CGB)is used as a green mining technology worldwide.However,under the coupled effects of geological stress and groundwater,the metal elements in the CGB tend to migrate into nearby strata,which can consequently result in pollution of the groundwater environment.In this paper,the influence of initial pH and stress damage on the migration behavior of metal elements in CGB is quantitatively studied through the multi-physical field coupling model of stress-permeability-con centration.The enhanced Nemerow index evaluation method is used to comprehensively evaluate the impact of these metal elements migration behaviors on the groundwater environment.The research results show that:(1)When the stress damage of the CGB increases from 0.76 to 0.95,the Darcy velocity at the bottom of the CGB first increases,then decreases,and finally stabilizes at 2.01×10^(-7)m/s.The longest time to reach the maximum Darcy velocity is 3 a.(2)When the damage of the CGB is 0.95,the farthest migration distances of Al,Cr,Mn,Fe,Ba,and Pb are 40.5,34.0,29.8,32.9,38.8 and 32.1 m,respectively.(3)The alkaline environment stimulates the migration of Al,Cr,Fe,Mn,and Pb,whereas Ba migrates farther under acidic conditions.The farthest migration distance of Ba is 31.6 m under pH 3.(4)The enhanced Nemerow index indicates that when stress damage increases from 0.76 to 0.95,the areas with poor water quality increase from 0 to 1.71%,and no area is classified as very poor grade.When the initial pH changes from 3 to 11,100%of the region is classified as fair or above.The initial pH of the CGB has a relatively slight influence on the groundwater environment.This study provides experimental data and theoretical basis for the environmental evaluation of CGB. 展开更多
关键词 cementitious gangue-fly ash backfill Metal elements Migration patterns Environmental effects Geological stress damage pH
在线阅读 下载PDF
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
14
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
原文传递
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
15
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
在线阅读 下载PDF
Preparation and Performance Study of Cementitious Capillary Crystalline Waterproof Materials
16
作者 Hui Li Yu Liu Gaoshang Zhang 《Journal of Architectural Research and Development》 2024年第3期42-52,共11页
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro... Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW. 展开更多
关键词 cementitious penetration crystalline waterproof material IMPERMEABILITY Mechanism analysis Optimization design
在线阅读 下载PDF
Enhanced photocatalytic performance of cementitious material with TiO_2@Ag modified fly ash micro-aggregates 被引量:5
17
作者 杨露 高衣宁 +2 位作者 王发洲 刘鹏 胡曙光 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期357-364,共8页
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m... A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field. 展开更多
关键词 Photocatalytic cementitious materials Zeolite fly ash bead Photocatalytic effect TITANIA Silver modification
在线阅读 下载PDF
Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams 被引量:8
18
作者 蔡景明 潘金龙 袁方 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期330-335,共6页
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t... To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams. 展开更多
关键词 engineered cementitious composites (ECC) DUCTILITY flexural behavior finite element
在线阅读 下载PDF
Development of engineered cementitious composites with local ingredients 被引量:11
19
作者 钱吮智 张志刚 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期327-330,共4页
In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA f... In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility. 展开更多
关键词 engineered cementitious composites(ECC) high tensile ductility material cost feasibility study
在线阅读 下载PDF
Iron ore tailings used for the preparation of cementitious material by compound thermal activation 被引量:28
20
作者 Zhong-lai Yi Heng-hu Sun +1 位作者 Xiu-quan Wei Chao Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期355-358,共4页
In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore t... In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal activation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore railings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the standard of 42.5 cement of China. 展开更多
关键词 iron ore tailings comprehensive utilization cementitious materials thermal activation
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部