期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MODIFICATION THE CEMENTIOUS MATERIAL OF ULTRA-HIGH-STRENGTH SLEEPER CONCRETE
1
作者 崔崇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期28-34,共7页
This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthe... This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthesis reaction (HSR) in the autoclave-cured condition. The replacement of cement by CSF and PQSS can signifi cantly increase the Jflerural and compressive strength which reach 22MPa and 150MPa respectively and de-crease the porosity oj the cement mortar. The ratio oj fine aggregation, standard sand to cementions material has sig nificant influence on the mortar strength. The mechanisms involved in cement and natural mineral flour and the HSR are presented. CaO/SiO2 ratio ranges from 3. 20 to 1. 11. the main hydrate phase is C2SH and there is not Tober-morite through X-Ray diffraction qualitative analysis. The new and ultra-high strength cementious material as basic material of sleeper concrete can he used in prestressed reinforcement sleeper concrete. 展开更多
关键词 crystalline silica furne ultra-fine natural mineral flour sleeper concrete ultra high strength cementious material
在线阅读 下载PDF
CO2 sequestration characteristics in the cementitious material based on gangue backfilling mining method 被引量:11
2
作者 Peng Wang Xianbiao Mao Shen-En Chen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期721-729,共9页
The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emiss... The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent. 展开更多
关键词 GANGUE BACKFILLING GOAF Carbon dioxide SEQUESTRATION MINERAL CARBONATION cementious material
在线阅读 下载PDF
The Crack Self-healing Properties of Cement-based Material with EVA Heat-melt Adhesive 被引量:1
3
作者 袁雄洲 孙伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期774-779,共6页
An experimental program was carried out to investigate whether EVA (ethylene vinyl acetate copolymer) heat-melt adhesive can potentially act as a self-healing agent in cement-based material. The effects of incorpora... An experimental program was carried out to investigate whether EVA (ethylene vinyl acetate copolymer) heat-melt adhesive can potentially act as a self-healing agent in cement-based material. The effects of incorporation of EVA and heating on the properties of mortar were studied. Self-healing capacity of EVA specimens was also verified. The experimental results show that the addition of EVA would not greatly affect original characteristics of the matrix when EVA content was less than 5%; the interface between EVA and cement matrix was well improved after heating, which allows a significant improvement in flexural strength and toughness of specimen; pre-damaged specimens in various degrees (30%, 50% and 70%) were effectively repaired by EVA and the repair efficiency all exceeded 100%. 展开更多
关键词 CRACK heat-melt adhesive EVA cementious material SELF-REPAIRING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部