Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This ...Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.展开更多
The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed ...The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50808066)the Scientific Research Foundation for Returned Overseas Chinese Scholars
文摘Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.
基金supported by One Thousand Talents Scheme of China, the National Natural Science Foundation of China(No. 50808066)the Fundamental Research Funds for the Central Universities of China (No. 2009B14814)
文摘The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.