The gaseous penetration of La-Ce into PbTiO3 ceramics is reported. The compounds of La2Ti6O15 and CeTi21O38 are formed and the new La2Ti6O15-CeTi21O38-PbTiO3 ceramics are prepared by the penetration of La and Ce in th...The gaseous penetration of La-Ce into PbTiO3 ceramics is reported. The compounds of La2Ti6O15 and CeTi21O38 are formed and the new La2Ti6O15-CeTi21O38-PbTiO3 ceramics are prepared by the penetration of La and Ce in the gaseous state. The new ceramic materials have a significant change in electric properties. The room temperature resistivity decreases from 2.0×1010 to 0.248 Ω. m, and the grain resistance exhibits an obvious PTCR effect with the change of temperature. However, the grain boundary resistance decreases rapidly with increase in temperature. The change rule of the total resistance is similar to that of the grain boundary, and the PTCR effect disappears and the tendency of transition to a conductive body is manifest. The XPS analysis suggests that the particles that are Pb, Ti, La and Ce in La2Ti6O15-CeTi21O38-PbTiO3 ceramics all change their valence and lead to decreasing resistivity, and the bound energy peak values of elements in La2Ti6O15-CeTi21O38-PbTiO3 ceramics are also reported. The La2Ti6O15-CeTi21O38-PbTiO3 ceramics have a better thermal stability in high temperatures through TG-DTA analysis.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
Calcium montmorillonite from Liao-ning was organically intercalated by using cety1 trimethy1 ammonium bromide after it was treated with sodium carbonate. The optimal dosage of intercalating agent was tested. The organ...Calcium montmorillonite from Liao-ning was organically intercalated by using cety1 trimethy1 ammonium bromide after it was treated with sodium carbonate. The optimal dosage of intercalating agent was tested. The organically intercalated montmorillonite composites were characterized by the methods of XRD, FTIR and DTA/TG. The results show that the intercalating effect of the organically intercalated montmorillonite composite is the best when the amount of intercalating agent reached 120% cation exchange capacity (CEC)展开更多
文摘The gaseous penetration of La-Ce into PbTiO3 ceramics is reported. The compounds of La2Ti6O15 and CeTi21O38 are formed and the new La2Ti6O15-CeTi21O38-PbTiO3 ceramics are prepared by the penetration of La and Ce in the gaseous state. The new ceramic materials have a significant change in electric properties. The room temperature resistivity decreases from 2.0×1010 to 0.248 Ω. m, and the grain resistance exhibits an obvious PTCR effect with the change of temperature. However, the grain boundary resistance decreases rapidly with increase in temperature. The change rule of the total resistance is similar to that of the grain boundary, and the PTCR effect disappears and the tendency of transition to a conductive body is manifest. The XPS analysis suggests that the particles that are Pb, Ti, La and Ce in La2Ti6O15-CeTi21O38-PbTiO3 ceramics all change their valence and lead to decreasing resistivity, and the bound energy peak values of elements in La2Ti6O15-CeTi21O38-PbTiO3 ceramics are also reported. The La2Ti6O15-CeTi21O38-PbTiO3 ceramics have a better thermal stability in high temperatures through TG-DTA analysis.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
基金Funded by the 11th Five National Science and Technology Supporting 9Key Project "Engineering Research for Nonmetallic Resources Comprehensive Utilization"( 2006BAB12B00) Educational Ministry Scientific and Technological Research Key Project (No. 02052)
文摘Calcium montmorillonite from Liao-ning was organically intercalated by using cety1 trimethy1 ammonium bromide after it was treated with sodium carbonate. The optimal dosage of intercalating agent was tested. The organically intercalated montmorillonite composites were characterized by the methods of XRD, FTIR and DTA/TG. The results show that the intercalating effect of the organically intercalated montmorillonite composite is the best when the amount of intercalating agent reached 120% cation exchange capacity (CEC)