Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i...Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.展开更多
As an efficient immunostimulant,chitosan oligosaccharide(COS)can enhance the immunity of teleosts;however,the underlying molecular mechanisms still require elucidation.Competing endogenous RNAs(ceRNAs)are vital regula...As an efficient immunostimulant,chitosan oligosaccharide(COS)can enhance the immunity of teleosts;however,the underlying molecular mechanisms still require elucidation.Competing endogenous RNAs(ceRNAs)are vital regulators in the immune response,but their roles in half-smooth tongue sole(Cynoglossus semilaevis)remain unclear.In this study,for the first time,we studied whole-transcriptome expression profiles and analyzed ceRNA networks in peripheral blood leukocytes of half-smooth tongue sole treated with COS.A total of 19 circRNAs(DE-circRNAs),18 miRNAs(DE-miRNAs)and 50 previously identified lncRNAs(DElncRNAs)were differentially expressed after COS stimulation.The DE-lncRNAs and DE-miRNAs targeted numerous immunity-related genes,and were enriched in important pathways,including MAPK and Toll-like receptor signaling pathways,suggesting the immunoregulatory roles of COS.Furthermore,we constructed circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks using DE-circRNAs,DE-miRNAs,DE-lncRNAs,and DE-mRNAs.Additionally,a ceRNA network with immunity-related DEmRNAs was constructed,showing that 3 DE-circRNAs,12 DE-lncRNAs,and 29 DEGs exhibited crosstalk through 9 DE-miRNAs.Intriguingly,a DE-miRNA in the ceRNA network,miR-144-3p,was targeted by DE-lncRNA tnrc6a,and negatively regulated the genes of inhibitor of nuclear factor kappa B kinases(IKKs)(ikbkg,ikbkb,and ikbip)and c3ar1.Ikbkg,ikbkb,and c3ar1 were significantly up-regulated in macrophages stimulated by LPS.It could be inferred that ncRNAs participated in the immune and inflammatory response by acting as ceRNAs after COS stimulation in teleosts.These findings indicate that COS could enhance the immunity of teleosts by regulating ncRNAs,and lay the foundation for further practical application of COS in aquaculture.展开更多
基金supported by the National Natural Science Foundation of China(42006082)Natural Science Foundation of Jiangsu Province of China(BK20221323)+1 种基金“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(JBGS[2021]034)State Key Laboratory of Developmental Biology of Freshwater Fish(2021KF009)。
文摘Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
基金supported by the National Key Research and Development Project of China(No.2022YFD2400401)the Key Research and Development Project of Shandong(No.2021LZGC028)the Academician Special Program of Shandong Province(No.2023ZLYS02)。
文摘As an efficient immunostimulant,chitosan oligosaccharide(COS)can enhance the immunity of teleosts;however,the underlying molecular mechanisms still require elucidation.Competing endogenous RNAs(ceRNAs)are vital regulators in the immune response,but their roles in half-smooth tongue sole(Cynoglossus semilaevis)remain unclear.In this study,for the first time,we studied whole-transcriptome expression profiles and analyzed ceRNA networks in peripheral blood leukocytes of half-smooth tongue sole treated with COS.A total of 19 circRNAs(DE-circRNAs),18 miRNAs(DE-miRNAs)and 50 previously identified lncRNAs(DElncRNAs)were differentially expressed after COS stimulation.The DE-lncRNAs and DE-miRNAs targeted numerous immunity-related genes,and were enriched in important pathways,including MAPK and Toll-like receptor signaling pathways,suggesting the immunoregulatory roles of COS.Furthermore,we constructed circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks using DE-circRNAs,DE-miRNAs,DE-lncRNAs,and DE-mRNAs.Additionally,a ceRNA network with immunity-related DEmRNAs was constructed,showing that 3 DE-circRNAs,12 DE-lncRNAs,and 29 DEGs exhibited crosstalk through 9 DE-miRNAs.Intriguingly,a DE-miRNA in the ceRNA network,miR-144-3p,was targeted by DE-lncRNA tnrc6a,and negatively regulated the genes of inhibitor of nuclear factor kappa B kinases(IKKs)(ikbkg,ikbkb,and ikbip)and c3ar1.Ikbkg,ikbkb,and c3ar1 were significantly up-regulated in macrophages stimulated by LPS.It could be inferred that ncRNAs participated in the immune and inflammatory response by acting as ceRNAs after COS stimulation in teleosts.These findings indicate that COS could enhance the immunity of teleosts by regulating ncRNAs,and lay the foundation for further practical application of COS in aquaculture.