CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage ...CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.展开更多
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.
基金supported by the National Natural Science Foundation of China(21173153)National Hi-tech Research and Development Program of China(863)(2015AA034603)Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education,China(LYJ1407)~~
基金National Natural Science Foundation of China(20976120)the Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.