The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. Acco...The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.展开更多
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for...CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.展开更多
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (...CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.展开更多
Potassium-modified ceria-zirconia catalyst was synthesized by wetness impregnation method. The ageing treatment was performed in static air at 800℃ for 20 hr to evaluate the thermal stability of the catalyst. The cat...Potassium-modified ceria-zirconia catalyst was synthesized by wetness impregnation method. The ageing treatment was performed in static air at 800℃ for 20 hr to evaluate the thermal stability of the catalyst. The catalysts were characterized by X-ray diffraction, BET surface area, oxygen storage capacity, NOx-temperature programmed desorption and soot-temperature programmed oxidation measurements. By introduction of potassium, the maximum soot oxidation rate temperature (Tin) of the ceria-zirconia based catalyst decreased from 525 to 428℃ in the presence of NO under a loose contact mode. The shift of Tm of the K-modified catalyst after ageing is only 15℃. The enhanced activity of the aged catalyst mainly lies in the promotional effect of potassium on the NOx/oxygen storage capacity as well as the soot-catalyst contact.展开更多
文摘The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.
基金PRIN 2006, "Caratterizzazione spettroscopica e morfologica di Me-POSS eterogeneizzati", MEL Chemicals
文摘CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.
基金Project supported by the National "973"Project (2004CB719503)Project supported by the National Natural ScienceFoundation of China (50502023)
文摘CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.
基金supported by the Ministry of Science and Technology,China (No.2009AA064801,2010CB732304)
文摘Potassium-modified ceria-zirconia catalyst was synthesized by wetness impregnation method. The ageing treatment was performed in static air at 800℃ for 20 hr to evaluate the thermal stability of the catalyst. The catalysts were characterized by X-ray diffraction, BET surface area, oxygen storage capacity, NOx-temperature programmed desorption and soot-temperature programmed oxidation measurements. By introduction of potassium, the maximum soot oxidation rate temperature (Tin) of the ceria-zirconia based catalyst decreased from 525 to 428℃ in the presence of NO under a loose contact mode. The shift of Tm of the K-modified catalyst after ageing is only 15℃. The enhanced activity of the aged catalyst mainly lies in the promotional effect of potassium on the NOx/oxygen storage capacity as well as the soot-catalyst contact.