Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated....Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.展开更多
CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
基金supported by Guangdong Provincial Natural Science Foundation of China(030514)Science and Technology Plan of Guangdong Province of China(2004B33401006)Doctoral Startup Foundation of Guang Dong Pharmaceutical University.
文摘Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
基金supported by the National Natural Science Foundation of China(21173153)National Hi-tech Research and Development Program of China(863)(2015AA034603)Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education,China(LYJ1407)~~