The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterization...The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterizations,such as SEM,TEM,XRD,H2-TPR,XPS and N2 adsorption-desorption techniques.It is found that the hollow shell is composed of CuO and SiO2,and CeO2 nanoparticles are coated on the surface of CuO@SiO2 support.And the CeO2/CuO@SiO2 catalyst with the Ce/Cu mass ratios of 1:1 denoted as 1 CeO2/CuO@SiO2,which possesses a maximum amount of highly dispersed copper species and medium-sized CuO as well as the highest concentration of oxygen vacancies,exhibits the highest catalytic activity and widest full CO conversion window.The barrier effect of the SiO2 shell effectively prevents the reduction of CuO species,which broadens temperature window of CO total conversion and enhances CO2 selectivity above 155℃over the 1 CeO2/CuO@SiO2 catalyst in comparison with the CuO-CeO2 and CeO2-CuO catalysts.展开更多
The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was ...The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.展开更多
Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage prop...Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.展开更多
基金Project supported by the National Natural Science Foundation of China(21466024)the Natural Science Foundation of Inner Mongolia(2018MS02020,2018BS02008)
文摘The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterizations,such as SEM,TEM,XRD,H2-TPR,XPS and N2 adsorption-desorption techniques.It is found that the hollow shell is composed of CuO and SiO2,and CeO2 nanoparticles are coated on the surface of CuO@SiO2 support.And the CeO2/CuO@SiO2 catalyst with the Ce/Cu mass ratios of 1:1 denoted as 1 CeO2/CuO@SiO2,which possesses a maximum amount of highly dispersed copper species and medium-sized CuO as well as the highest concentration of oxygen vacancies,exhibits the highest catalytic activity and widest full CO conversion window.The barrier effect of the SiO2 shell effectively prevents the reduction of CuO species,which broadens temperature window of CO total conversion and enhances CO2 selectivity above 155℃over the 1 CeO2/CuO@SiO2 catalyst in comparison with the CuO-CeO2 and CeO2-CuO catalysts.
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
文摘The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.
文摘Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.