To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were inves...To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.展开更多
In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics ...In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics and thermodynamics performances of the alloys were studied in detail.The results show that the Mg85Cu5Ni10 alloys with CeO2 additive have faster hydrogenation/dehydrogenation kinetics and better thermodynamic properties.The dehydrogenation activation energy is reduced to 81.211 kJ/mol from 119.142 by adding 8 wt%CeO2.CeO2 contributes to producing structural defects,nanocrystallines,grain boundaries,partial amorphous,lattice dislocations and cracks which are favorable to provide more hydrogen diffusion channels during hydriding/dehydriding process.Meanwhile,CeO2 additive weakens the bond energy of Mg-H.These micro structural changes caused by CeO2 additive improve the hydrogen storage performance of Mg85Cu5Ni10 markedly.展开更多
文摘To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.
基金Project supported by the National Natural Science Foundation of China(51761032,51901105,51871125)。
文摘In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics and thermodynamics performances of the alloys were studied in detail.The results show that the Mg85Cu5Ni10 alloys with CeO2 additive have faster hydrogenation/dehydrogenation kinetics and better thermodynamic properties.The dehydrogenation activation energy is reduced to 81.211 kJ/mol from 119.142 by adding 8 wt%CeO2.CeO2 contributes to producing structural defects,nanocrystallines,grain boundaries,partial amorphous,lattice dislocations and cracks which are favorable to provide more hydrogen diffusion channels during hydriding/dehydriding process.Meanwhile,CeO2 additive weakens the bond energy of Mg-H.These micro structural changes caused by CeO2 additive improve the hydrogen storage performance of Mg85Cu5Ni10 markedly.