期刊文献+
共找到3,549篇文章
< 1 2 178 >
每页显示 20 50 100
High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation 被引量:1
1
作者 Ning Yu Fu-Li Wang +5 位作者 Xin-Yin Jiang Jin-Long Tan Mirabbos Hojamberdiev Han Hu Yong-Ming Chai Bin Dong 《Journal of Energy Chemistry》 2025年第3期208-217,共10页
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi... Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability. 展开更多
关键词 LaCoO_(3) Mn doping Acidic environment Dissolution-deposition equilibrium
在线阅读 下载PDF
Influence of Cr^(3+) Doping Concentration on the Persistent Performance of YAGG:Ce^(3+),Cr^(3+) Luminescent Ceramics
2
作者 LI Tingsong WANG Wenli +4 位作者 LIU Qiang WANG Yanbin ZHOU Zhenzhen HU Chen LI Jiang 《无机材料学报》 北大核心 2025年第9期1037-1044,共8页
Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent lumine... Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent luminescent material applications.At present,YAGG:Ce^(3+),Cr^(3+)powders exhibit good persistent performance,but their persistent performance of ceramics still needs to be further improved to meet the new requirements.In this work,(Y_(0.998)Ce_(0.002))_(3)(Al_(1-x)Cr_(x))_(2)Ga_(3)O_(12) ceramics with different Cr^(3+)doping concentrations were prepared by solid-state reaction,including air pre-sintering,hot isostatic pressing(HIP)post-treatment and air annealing,to investigate the effects of Cr^(3+)doping concentration on the microstructure,optical properties and persistent performance of the ceramics.The results showed that as the doping concentration of Cr^(3+)increased from 0.025%to 0.2%(in atom),no significant effect of Cr^(3+)concentration on the morphology of pre-sintered ceramics or HIP post-treatment ceramics was observed,but the in-line transmittance gradually increased while the persistent performance gradually decreased.Among them,YAGG:Ce^(3+),Cr^(3+)ceramics doped with 0.025%Cr^(3+)showed the strongest initial luminescence intensity exceeding 6055 mcd/m^(2) and a persistent time of 1030 min after air pre-sintering combined with HIP post-treatment and air annealing.By optimizing the Cr^(3+)doping concentration and the fabrication process,the persistent luminescence(PersL)performance of the YAGG:Ce^(3+),Cr^(3+)ceramics was obviously improved. 展开更多
关键词 YAGG:Ce^(3+) Cr^(3+)ceramic Cr^(3+)doping concentration persistent luminescence hot isostatic pressing air annealing
在线阅读 下载PDF
Structure deformation of Ni-Fe-Se enables efficient oxygen evolution via RE atoms doping
3
作者 Hong-Rui Zhao Cheng-Zong Yuan +7 位作者 Cong-Hui Li Wen-Kai Zhao Fu-Ling Wu Lei Xin Hong Yin Shu-Feng Ye Xiao-Meng Zhang Yun-Fa Chen 《Rare Metals》 2025年第1期336-348,共13页
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri... The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance. 展开更多
关键词 Ce doping Structure deformation Ni-Fe-Se Electron transfer Oxygen evolution
原文传递
Vanadium-site multivalent cation doping strategy of fluorophosphate cathode for low self-discharge sodium-ion batteries
4
作者 Xinyuan Wang Qian Wang +3 位作者 Jiakai Zhang Yuanzhen Ma Miao Huang Xiaojie Liu 《Journal of Energy Chemistry》 2025年第3期365-376,共12页
Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,i... Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials. 展开更多
关键词 Multivalent cation doping V-site doping Fe^(3+)doping SELF-DISCHARGE Fluorophosphate cathode Sodium-ion batteries
在线阅读 下载PDF
Crystalline@amorphous core-shell structure of WO3@WO_(3-x)S_(x) established via doping strategy for enhancing magnesium ions storage performance
5
作者 Shiqi Ding Yuxin Tian +7 位作者 Jiankang Chen Guofeng Wang Bing Sun He Lv Lei Wang Guicun Li Alan Meng Zhenjiang Li 《Journal of Magnesium and Alloys》 2025年第3期1353-1363,共11页
Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction ki... Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction kinetics issues of rechargeable magnesium batteries(RMBs)by providing more active sites as well as releasing inner stress during cycling.Herein,WO_(3)@WO_(3-x)S_(x) owning crystalline@amorphous core-shell structure containing both active core and active shell is constructed successfully by introducing S into metastable WO3 structure under temperaturefield applying.In such structure,amorphous shell would provide continuous Mg^(2+)diffusion channels due to its isotropy property for most Mg^(2+)migrating rapidly to interface and then adsorb at ions reservoir formed by interfacial electricfield for increasing specific capacity.It also makes security for stable structure of WO_(3)@WO_(3-x)S_(x) by alleviating volume expansion of crystalline core WO_(3) during cycling to prolong cycling life.Additionally,“softer”ions S^(2-)would weaken interaction between hard acid Mg^(2+) and ionic lattice to enhance Mg^(2+)storage kinetics.Therefore,WO_(3)@WO_(3-x)S_(x) delivers the superior cycling performance(1000 cycles with 83.3%),rate capability(88.5 mAh g^(-1) at 1000 mA g^(-1))and specific capacity(about 150 mAh g^(-1) at 50 mA g^(-1)),which is near 2 times higher than that of WO3.It is believed that the crystalline@amorphous core-shell structure with both active core and shell designing via doping strategy is enlightening for the development of high-performance RMBs,and such design can be extended to other energy storage devices for better electrochemical performance. 展开更多
关键词 doping SULFURATION Crystalline@amorphous core-shell structure WO_(3) Rechargeable magnesium batteries
在线阅读 下载PDF
Boosting photoluminescence efficiency and stability of Mn^(2+)-doped CsPbCl_(3) perovskite nanocrystals via europium ion codoping
6
作者 Zhuwei Gu Ke Xing +2 位作者 Sheng Cao Bingsuo Zou Jialong Zhao 《Journal of Rare Earths》 2025年第9期1835-1843,共9页
Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of phot... Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs. 展开更多
关键词 CsPbCl_(3) Mn doped Eu^(^(3+))ions Photoluminescence quantum yield STABILITY Rare earths
原文传递
Transition metal doping of CeO_(2) boosts photo-assisted electrocatalytic oxygen evolution performance
7
作者 Zahra Albu Nawal Al Abass +8 位作者 Preetam Kumar Sharma Talal F.Qahtan Siming Huang Nusrat Rashid Galyam Sanfo Migual Pineda Abduljabar Al-Sayoud Bandar AlOtaibi Mojtaba Abdi-Jalebi 《Journal of Energy Chemistry》 2025年第11期973-985,I0022,共14页
Integrating electrocatalytic and photocatalytic functionalities into a single-component system offers a promising strategy for enhancing catalytic activity in photo-assisted electrocatalysis.This synergy is critical f... Integrating electrocatalytic and photocatalytic functionalities into a single-component system offers a promising strategy for enhancing catalytic activity in photo-assisted electrocatalysis.This synergy is critical for advancing energy conversion efficiency,yet significant challenges persist,particularly in optimizing individual layers and minimizing charge recombination.In this work,we present a novel singlecomponent photo-assisted electrocatalytic system based on Ni-or Co-doped CeO_(2),which simultaneously functions as a light absorber and electrocatalyst.We elucidate the critical relationship between bandgap engineering and d-band states,demonstrating that controlled modulation of dopant-derived 3d states within the CeO_(2)bandgap facilitates visible-light harvesting and optimizes the adsorption energetics of key reaction intermediates.Specifically,Ni-doped CeO_(2)introduces additional 3d states near the Fermi level,narrowing the bandgap from 3.0 to 2.7 eV.This modification not only enhances visible-light absorption but also improves charge transfer efficiency at the catalyst-electrolyte interface.Density functional theory(DFT)calculations and spectroscopic analyses reveal that Ni doping significantly enhances performance,achieving a 64 mV reduction in overpotential at 50 mA/cm^(2)under illumination,while Co-doped CeO_(2)exhibits a 35 mV reduction in 1 M NaOH.Our findings demonstrate that a simple doping strategy can tailor 3d states to promote efficient charge carrier separation and intermediate transfer,offering a versatile and scalable approach to designing advanced electrocatalysts for water splitting. 展开更多
关键词 Photo-assisted electrocatalysis CeO_(2) Transition-metal doping Water splitting Bandgap narrowing 3d-band states
在线阅读 下载PDF
High‑Performance p‑Type Bi_(2)Te_(3)‑Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping
8
作者 Xicheng Guan Zhiyuan Liu +8 位作者 Ni Ma Zhou Li Juan Liu Huiyan Zhang Hailing Li Qian Ba Junjie Ma Chuangui Jin Ailin Xia 《Acta Metallurgica Sinica(English Letters)》 2025年第5期849-858,共10页
Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by dire... Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by direct Sb doping method.It can be found that doping Sb into Bi_(2)Te_(3) lattice array for Bi-site replacement facilitates the generation of Sb′Te anti-site defects.This anti-site defects can increase the hole concentration and optimize electrical transport properties of Bi_(2−x)Sb_(x)Te_(3) alloys.In addition,the point defects induced by mass and stress fluctuations and the Sb impurities produced during the sintering process can enhance the multi-scale phonon scattering and reduce the lattice thermal conductivity.As a result,the Bi_(0.47)Sb_(1.63)Te_(3) sample has a maximum thermoelectric figure of merit ZT of 1.04 at 350 K.It is worth noting that the bipolar effect of Bi_(2)Te_(3)-based alloys can be weakened with the increase of Sb content.The Bi_(0.44)Sb_(1.66)Te_(3) sample has a maximum average ZT value(0.93)in the temperature range of 300–500 K,indicating that direct doping of Sb can broaden the temperature range corresponding to the optimal ZT value.This work provides an idea for developing high-performance near room temperature thermoelectric materials with a wide temperature range. 展开更多
关键词 Bi2Te3-based materials Sb doping Wide temperature range Thermoelectric properties
原文传递
Simultaneously improved thermoelectric performance and thermal stability for n-type Mg_(3)Sb_(2)-based alloys via synergy of elemental Mg and Co doping
9
作者 Yutong Chen Hongjing Shang +7 位作者 Xiaolei Wang Hongwei Gu Zhonghua Zhang Qi Zou Lin Zhang Yu Jiang Guicun Li Fazhu Ding 《Rare Metals》 2025年第10期7809-7817,共9页
N-type Mg_(3)Sb_(2)-based alloys have recently attracted considerable attention due to the high thermoelectric performance.However,the performance degradation occurs because of Mg loss at high temperature.Elemental Mg... N-type Mg_(3)Sb_(2)-based alloys have recently attracted considerable attention due to the high thermoelectric performance.However,the performance degradation occurs because of Mg loss at high temperature.Elemental Mg plays a significantly critical role in thermoelectric performance and thermal stability,where most studies on these compounds have thus far concentrated on the nominal Mg content which heavily depends on the fabrication methods,with few attentions devoted to the essential issue of actual Mg content,resulting in the unclear mechanism of improving their stability,severely limiting their practical applications in thermoelectric power generation.Here,we systematically analyzed the thermoelectric performance,thermal stability,and changed micro structures before and after in situ electronic thermoelectric performance measurement at 750 K,for n-type Mg_(3)Sb_(2)-based alloys with different Mg and Co content.It was found that elemental Mg and Co have a similar effect on adjusting the electron transport characteristic,and the peak values of power factor and ZT are up to 32.4μW cm^(-1)K^(-2)and 1.8,respectively.Thermal stability is more sensitive to the Mg content of material matrix than thermoelectric performance,and the effects of Mgpoor condition on thermal stability cannot be compensated via cationic Co doping.We also proved the route of Mg loss in experiments.By balancing Mg content and Co doping,the optimized sample showed good stability,in which it reduced only by 10%over 170 h of measurement at 750 K.Density functional theory calculation showed that the bonding strength of Co-Mg is stronger than MgMg,also explaining the enhanced thermal stability. 展开更多
关键词 Thermoelectric Thermal stability Mg_(3)Sb_(2) Cationic doping Mg content
原文传递
Reducing dielectric loss and improving coercivity and elastic parameters of cobalt-magnesium ferrite nanoparticles with La^(3+)doping aid
10
作者 N.S.Al-Bassami S.F.Mansour M.A.Abdo 《Journal of Rare Earths》 2025年第6期1256-1263,I0007,共9页
This work studied the magnetic,dielectric,and mechanical parameters of lanthanum doped cobalt-magnesium ferrite nanoparticles Co_(0.5)Mg_(0.5)La_(x)Fe_(2-x)O4(CMLF)prepared by citrate combustion route.Fourier transfor... This work studied the magnetic,dielectric,and mechanical parameters of lanthanum doped cobalt-magnesium ferrite nanoparticles Co_(0.5)Mg_(0.5)La_(x)Fe_(2-x)O4(CMLF)prepared by citrate combustion route.Fourier transform infrared spectroscopy(FTIR)spectra show lower band(v_(2))at 391-386 cm^(-1) and upper band(v_(1))at 572-570 cm^(-1),which demonstrate the cubic spinel structure formation for all CMLF nanoferrites.Magnetic parameters such as saturation magnetization,remanent magnetization,coer-civity,magnetic moment,anisotropy constant,and initial permittivity were investigated using a vibrating sample magnetometer(VSM).The sample Co_(0.5)Mg_(0.5)La_(0.03)Fe_(1.97)O4 has the optimal saturation magnetization of 47.78 emu/g,whereas the sample Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.85)O4 has a maximum coercivity of 1031 Oe.The dielectric constant,dielectric loss tangent,ac conductivity and impedance(Z)were also investigated with the addition of La ions.With La doping,the dielectric loss value decreases with 52%compared to the pristine sample,indicating it to be a potential candidate for high frequency appli-cations.The ac conductivity graphs exhibit adherence to Jonscher's single power law,indicating that the conduction process is primarily driven by the small polaron tunneling mechanism.Analytical investigation was conducted on the impedance spectroscopy and electric modulus for the CMLF nanoferrites.The nanoferrite Co_(0.5)Mg_(0.5)La_(0.15)Fe_(1.9)O_(4)has the optimum longitudinal modulus(4.60 GPa),shear modulus(0.85 GPa),Young's modulus(2.37 GPa),and bulk modulus(3.46 GPa)compared tothepristine sample. 展开更多
关键词 Co-Mg-La ferrites Rare earth La^(3+)doping Magnetic properties Dielectric properties
原文传递
Synergistic p-doping and interface passivation of P3HT by oxidized organic small molecules toward efficient and stable perovskite solar modules
11
作者 Pin Lv Yuxi Zhang +9 位作者 Wen Liang Tan Junye Pan Yanqing Zhu Jiahui Chen Bingxin Duan Peiran Hou Min Hu Christopher R.Mc Neill Jianfeng Lu Yi-Bing Cheng 《Journal of Energy Chemistry》 2025年第9期477-484,I0013,共9页
Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic lo... Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation. 展开更多
关键词 P3HT doping Perovskite solar cells Perovskite solar modules Small molecule organic semiconductor Interface passivation
在线阅读 下载PDF
Enhanced Near‑Room‑Temperature Thermoelectric Performance of Mg_(3)Bi_(2) Through Ag Doping
12
作者 Dan Guo Yijun Ran +4 位作者 Juan He Lili Zhang Dayi Zhou Zhi Yu Kaiping Tai 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1742-1750,共9页
Mg_(3)Bi_(2)-based flms are promising near-room-temperature thermoelectric materials for the development of fexible thermoelectric devices.However,the high hole concentration caused by the abundance of intrinsic Mg va... Mg_(3)Bi_(2)-based flms are promising near-room-temperature thermoelectric materials for the development of fexible thermoelectric devices.However,the high hole concentration caused by the abundance of intrinsic Mg vacancies easily leads to deterioration of electrical properties,especially for p-type Mg_(3)Bi_(2) flm.And the optimization of thermal conductivity of the Mg_(3)Bi_(2)-based flms is barely investigated.In this work,we demonstrate the improved thermoelectric performances of p-type Mg_(3)Bi_(2) through Ag doping by magnetron sputtering.This doping successfully reduces the hole concentration and broadens the band gap of Mg_(3)Bi_(2),thus resulting in a peak power factor of 442μW m^(−1) K^(−2) at 525 K.At the same time,Ag doping-induced fuctuations in mass and microscopic strain efectively enhanced the phonon scattering to reduce the lattice thermal conductivity.Consequently,a maximum thermoelectric fgure of merit of 0.22 is achieved at 525 K.Its near-roomtemperature thermoelectric performances demonstrate superior performance compared to many Mg_(3)Bi_(2)-based flms.To further evaluate its potential for thermoelectric power generation,we fabricated a thermoelectric device using Ag-doped Mg_(3)Bi_(2) flms,which achieved a power density of 864μW cm^(⁻2) at 35 K temperature diference.This study presents an efective strategy for the advancement of Mg_(3)Bi_(2)-based flms for application in micro-thermoelectric devices. 展开更多
关键词 Thermoelectric performance Mg_(3)Bi_(2)films Ag doping Thermal conductivity Thermoelectric generator
原文传递
Promoting homogeneous tungsten doping in LiNiO_(2) through a grain boundary phase induced by excessive lithium
13
作者 Junjie Wang Yucen Yan +14 位作者 Zilan Zhao Jiayi Li Gui Luo Duo Deng Wenjie Peng Mingxia Dong Zhixing Wang Guochun Yan Huajun Guo Hui Duan Lingjun Li Shihao Feng Xing Ou Junchao Zheng Jiexi Wang 《Advanced Powder Materials》 2025年第1期1-9,共9页
LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific dopin... LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C. 展开更多
关键词 Lithium ion battery LiNiO_(2) Tungsten doping Grain boundary phase H2↔H3 phase transition
在线阅读 下载PDF
Sulfur doping and oxygen vacancy in In_(2)O_(3) nanotube co-regulate intermediates of CO_(2) electroreduction for efficient HCOOH production and rechargeable Zn-CO_(2) battery
14
作者 Yu Li Zhengrong Xu +2 位作者 Quanxin Guo Qin Li Rui Liu 《Journal of Energy Chemistry》 2025年第2期474-484,I0010,共12页
By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we rep... By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR. 展开更多
关键词 CO_(2)electroreduction Oxygen vacancy Sulfur doping In_(2)0_(3) Intermediate Zn-CO_(2)battery
在线阅读 下载PDF
一种医用放射性废液活度浓度现场监测装置的研制及性能测试
15
作者 陆小军 韩刚 +4 位作者 陈晓文 刘佳煜 宋家斑 赵超 何林锋 《核电子学与探测技术》 北大核心 2026年第1期33-40,共8页
随着医用同位素产业及核医学科的快速发展,医用放射性废液的准确监测日益重要。本研究通过硬件结构与软件优化,集成采样、测量、清洗功能,研制了一种医用放射性废液活度浓度现场监测装置并进行性能测试。测试结果表明:对于^(131)I、^(1... 随着医用同位素产业及核医学科的快速发展,医用放射性废液的准确监测日益重要。本研究通过硬件结构与软件优化,集成采样、测量、清洗功能,研制了一种医用放射性废液活度浓度现场监测装置并进行性能测试。测试结果表明:对于^(131)I、^(18)F、^(99)m Tc三种核素的能量分辨率分别为3.7%、3.2%、6.5%;取样稳定性好,单次连续取样重复性最大约0.7%,短期(8 h)稳定性优于-1.0%;清洗效率高,2次冲洗后清洗效率达89.2%,3次冲洗后清洗效率达96.9%;测量30 min,装置对^(131)I的最小可探测活度为9.7 Bq/L(置信水平95%),满足国家对于^(131)I核素废液的排放限值(10 Bq/L)要求。研究结果可为辐射环境监测、医疗机构、同位素生产研发企业的放射性废液活度浓度监测提供技术支持。 展开更多
关键词 医用放射性废液 现场监测 LaBr3(Ce)探测器 最小可探测活度
在线阅读 下载PDF
Effect of Mn-doping on performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:2
16
作者 翟静 赵敏寿 王丹丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期523-528,共6页
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva... Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+. 展开更多
关键词 lithium ion batteries cathode materials Li3V2(PO4)3 SOL-GEL doping
在线阅读 下载PDF
Ce3+离子激活的Sr5(BO3)3F荧光材料VUV-Vis发光性质 被引量:2
17
作者 林惠红 梁宏斌 张国斌 《中国稀土学报》 CAS CSCD 北大核心 2011年第5期554-559,共6页
利用高温固相法合成了一系列Ce3+掺杂的Sr5-2xCexNax(BO3)3F(x=0.01,0.03,0.05,0.10,0.15,0.20,0.25,0.30,0.35)荧光粉。用XRD表征了荧光粉的相纯度。测定了材料在真空紫外-紫外(VUV-UV)范围的激发光谱和VUV-UV光激发下的发射光谱。研... 利用高温固相法合成了一系列Ce3+掺杂的Sr5-2xCexNax(BO3)3F(x=0.01,0.03,0.05,0.10,0.15,0.20,0.25,0.30,0.35)荧光粉。用XRD表征了荧光粉的相纯度。测定了材料在真空紫外-紫外(VUV-UV)范围的激发光谱和VUV-UV光激发下的发射光谱。研究结果显示:Sr5(BO3)3F的基质吸收峰位置大约在150~190 nm范围,与Xe基稀有气体混合物等离子体发射波长吻合,适于用作PDP和无汞荧光灯用荧光粉的基质材料。从VUV-UV激发和发射光谱来分析,Ce3+在Sr5(BO3)3F中是占据了Sr(1)和Sr(2)格位,当Ce3+的掺杂浓度较低时,进入Sr(2)格位Ce3+的发光(~390 nm)较强,随着Ce3+的掺杂浓度增加,较低能量Sr(1)格位上Ce3+的发射(~450 nm)增强,因而在同一波长激发下,发射光谱随着掺杂浓度增加发生明显的红移现象,荧光体的发光颜色由蓝紫光(390 nm)向蓝绿光(453 nm)变化。 展开更多
关键词 发光 ce3+ Sr5(BO3)3F VUV—Vis 稀土
原文传递
下转换发光材料NaYF4:Ce3+/Eu3+的合成及性质研究 被引量:3
18
作者 张艺 李紫薇 刘云庆 《中国陶瓷》 CAS CSCD 北大核心 2018年第9期46-49,共4页
采用水热法以柠檬酸钠为表面活性剂,190℃条件下,反应12 h,成功合成了NaYF4∶Ce3+/Eu3+下转换发光材料。用X-射线衍射分析(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱分析(FTIR)、荧光光谱分析(FS)对材料进行了表征。结果表... 采用水热法以柠檬酸钠为表面活性剂,190℃条件下,反应12 h,成功合成了NaYF4∶Ce3+/Eu3+下转换发光材料。用X-射线衍射分析(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱分析(FTIR)、荧光光谱分析(FS)对材料进行了表征。结果表明,合成了六方相的NaYF4∶Ce3+/Eu3+晶体,激发峰为245 nm时,发射峰位于480-620 nm范围内。 展开更多
关键词 下转换 NAYF4 Ce^3+/Eu^3+
原文传递
Dy3+和Ce3+共掺Y3Al5O12荧光粉的制备及发光性质 被引量:8
19
作者 王林香 孙德方 +1 位作者 李晴 王霞 《发光学报》 EI CAS CSCD 北大核心 2020年第2期160-167,共8页
用高温固相法制备了YAG:5%Dy^3+以及(Ce 0.01 Dy y Y 0.99-y)3A15O12(y=0%,1%,3%,5%,7%,9%)荧光粉。XRD结果表明,NH 4Cl、LiCl、H3BO3三种助熔剂比较,添加H3BO3可有效降低YAG晶体的结晶温度,有效阻止中间相YAlO 3的形成。H3BO3做助熔剂... 用高温固相法制备了YAG:5%Dy^3+以及(Ce 0.01 Dy y Y 0.99-y)3A15O12(y=0%,1%,3%,5%,7%,9%)荧光粉。XRD结果表明,NH 4Cl、LiCl、H3BO3三种助熔剂比较,添加H3BO3可有效降低YAG晶体的结晶温度,有效阻止中间相YAlO 3的形成。H3BO3做助熔剂在1450℃煅烧6 h制备的Dy^3+和Ce^3+掺杂Y 3Al 5O 12荧光粉具有单一YAG立方相结构,且随Dy^3+掺杂浓度增加,(420)衍射峰逐渐向小角度偏移。在583 nm监测下;与单掺1%Ce^3+样品比较,Ce^3+与Dy^3+共掺样品在342 nm处的吸收均减弱;与单掺5%Dy^3+样品比较,Ce^3+与Dy^3+共掺样品在351 nm处的吸收明显增强。351 nm激发下,随Dy^3+掺杂浓度增加,Ce^3+与Dy^3+共掺样品中Ce^3+在526 nm处的发射强度逐渐减小,而在583 nm处的发射强度先增加后减弱,这说明351 nm激发下,Ce^3+与Dy^3+共掺样品中存在Ce^3+向Dy^3+的部分能量传递。465 nm激发下,Ce^3+与Dy^3+共掺杂样品中只出现Ce^3+的发射峰,且随Dy^3+浓度增加,Ce^3+发光减弱。当Dy^3+离子浓度为3%时,Ce^3+与Dy^3+共掺样品中Dy^3+相对光强达到最大,此时Ce^3+→Dy^3+能量传递效率为15.7%。405 nm激发下,随Dy^3+掺杂浓度增加,合成粉体中Ce^3+的寿命逐渐减小。经计算,Ce^3+→Dy^3+能量传递临界距离为3.464 nm,为电四极-电四极相互作用的共振能量传递。 展开更多
关键词 Dy^3+和Ce^3+共掺Y3Al5O12 发光性质 能量传递 能级寿命 多极相互作用
在线阅读 下载PDF
Ca取代Sr对Sr3Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉的发光性能影响 被引量:1
20
作者 马小乐 庄卫东 +4 位作者 郭汉杰 刘荣辉 何华强 刘元红 胡运生 《发光学报》 EI CAS CSCD 北大核心 2014年第5期519-525,共7页
采用高温固相法合成Ca取代Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr的Sr3-x Ca x Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉。由于Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce3+也具有两个不同的占位。结合Ce3+的光... 采用高温固相法合成Ca取代Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr的Sr3-x Ca x Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉。由于Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce3+也具有两个不同的占位。结合Ce3+的光谱结果和Van Uitert经验公式,分别研究了十配位Ce(1)3+和八配位Ce(2)3+的猝灭浓度和荧光寿命,指出是由于Ca的掺入减小了Ce(1)3+发光中心,增加了Ce(2)3+发光中心,从而出现随着Ca/Sr比增加,样品在400 nm激发下发光强度减小,而在460 nm激发下发光强度增大的现象。同时,Ca的掺入增强了粉体发光的热稳定性。调节Ca含量可以使粉体实现从绿黄色到黄色的发光,表明Sr3-x Ca x Al0.6Si0.4-O4.4F0.6∶Ce3+荧光粉是一款潜在的适合近紫外和蓝光激发的白光LED用荧光粉。 展开更多
关键词 荧光粉 Sr3-xCaxAl0.6Si0.4O4.4F0.6∶ce3+ 猝灭浓度 荧光寿命
在线阅读 下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部