The samples with full density were prepared by hot pressing the the melt-spun powders mixed with DyF_(3)powders of different mass fractions followed by hot-deformation process.The magnetic properties and temperature d...The samples with full density were prepared by hot pressing the the melt-spun powders mixed with DyF_(3)powders of different mass fractions followed by hot-deformation process.The magnetic properties and temperature dependence of coercivity were obtained by BH tracer and VSM,respectively.The microstructure were analyzed by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The coercivity of Ce-containing hot-deformed magnets is increased from 1.41 to 1.95 T by grain boundary diffusion of 3 wt%DyF_(3),and is further enhanced to 2.05 T after annealing treatment.The thermal stability of coercivity and remanence is improved.The annealing condition in this work crucially plays a role in thickening the grain boundary phase.Microstructure analysis reveals that the continuous and thick grain boundary phase formed after DyF_(3)diffusion can weaken the magnetic coupling between grains,and suppress the platelet shaped grain size and the aspect ratio.The Dycontaining shell structure formed by the partial diffusion of Dy into the main phase can increase the magnetic anisotropy field,which is the main reason for the coercivity improvement.After optimizing the structure by DyF_(3)diffusion,the"dendritic-like"reverse domain is transformed into the"dot scatteredlike"reverse domain.展开更多
Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning e...Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning electron microscope(SEM)and X-ray diffraction(XRD)measurements were carried out to analyze the surface morphology and phase composition.The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy(EIS)tests.The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film,and improve the surface integrity and corrosion resistance;higher concentration of Ce-containing solution could seal fewer micro-cracks,and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.展开更多
An environment-friendly cerium-based sealing treatment was developed to improve the surface integrity and corrosion resistance of Mg–Al hydrotalcite film on AZ91D magnesium alloy. The cerium dioxide was generated thr...An environment-friendly cerium-based sealing treatment was developed to improve the surface integrity and corrosion resistance of Mg–Al hydrotalcite film on AZ91D magnesium alloy. The cerium dioxide was generated through three stages namely nucleation, growth and dissolution, modifying the surface of AZ91D Mg alloy, and the hydrotalcite film became integral after being treated for 30 min. The results of polarization curves showed that the anti-corrosive performance of the hydrotalcite film was enhanced by the sealing treatment. Moreover, the immersion tests and electrochemical impedance spectrum measurements also demonstrated that the sealed hydrotalcite film provided a longer-term protection of magnesium alloy from corrosion as compared to the unsealed one.展开更多
基金Project supported by the Ningbo Science and Technology Major Project(2017B10002,2019B10093)the Zhejiang Province Technology Application Research(LGG19E010001)the National Natural Science Foundation of China(51671207)。
文摘The samples with full density were prepared by hot pressing the the melt-spun powders mixed with DyF_(3)powders of different mass fractions followed by hot-deformation process.The magnetic properties and temperature dependence of coercivity were obtained by BH tracer and VSM,respectively.The microstructure were analyzed by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The coercivity of Ce-containing hot-deformed magnets is increased from 1.41 to 1.95 T by grain boundary diffusion of 3 wt%DyF_(3),and is further enhanced to 2.05 T after annealing treatment.The thermal stability of coercivity and remanence is improved.The annealing condition in this work crucially plays a role in thickening the grain boundary phase.Microstructure analysis reveals that the continuous and thick grain boundary phase formed after DyF_(3)diffusion can weaken the magnetic coupling between grains,and suppress the platelet shaped grain size and the aspect ratio.The Dycontaining shell structure formed by the partial diffusion of Dy into the main phase can increase the magnetic anisotropy field,which is the main reason for the coercivity improvement.After optimizing the structure by DyF_(3)diffusion,the"dendritic-like"reverse domain is transformed into the"dot scatteredlike"reverse domain.
基金supported by the National Natural Science Foundation of China(No.51701093)the Natural Science Foundation of Jiangsu Province(No.BK20170764)+2 种基金the Six Talent Peaks(No.2015-XCL-025)the Qing Lan Project of Jiangsu Province,the Practice Innovation Program for graduate students of Jiangsu Province(No.SJZZ16_0292)the Research Fund of Nanjing Institute of Technology(No.JCYJ201603).
文摘Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning electron microscope(SEM)and X-ray diffraction(XRD)measurements were carried out to analyze the surface morphology and phase composition.The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy(EIS)tests.The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film,and improve the surface integrity and corrosion resistance;higher concentration of Ce-containing solution could seal fewer micro-cracks,and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.
基金supported by the Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA201407)the Innovative Foundation Project for Students of Jiangsu Province (No. 201511276012Z)the Innovative Foundation Project for Students of Nanjing Institute of Technology (No. TB201617004)
文摘An environment-friendly cerium-based sealing treatment was developed to improve the surface integrity and corrosion resistance of Mg–Al hydrotalcite film on AZ91D magnesium alloy. The cerium dioxide was generated through three stages namely nucleation, growth and dissolution, modifying the surface of AZ91D Mg alloy, and the hydrotalcite film became integral after being treated for 30 min. The results of polarization curves showed that the anti-corrosive performance of the hydrotalcite film was enhanced by the sealing treatment. Moreover, the immersion tests and electrochemical impedance spectrum measurements also demonstrated that the sealed hydrotalcite film provided a longer-term protection of magnesium alloy from corrosion as compared to the unsealed one.