CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray phot...CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperature were almost the same. The SBEX of CdIn2S4 products decreased when the synthesized temperature increased, and the largest SBET was 33.16 m2 g-1 (120 ℃ sample). The degradation of methyl orange (MO) under the visible-light irradiation had been used as a probe reaction to investigate the photocatalytic activity of the as-prepared CdIn2S4, which showed that the CdIn2S4 sample synthesized at 120 ℃ presented the best photocatalytic activity for MO degradation.展开更多
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan...Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.展开更多
Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional ar...Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)-two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent- mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/ CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm^-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type II band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalyfic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.展开更多
基金Natural Science Foundation of China(11804003)Natural Science Foundation of Anhui Province(1908085QF277)+1 种基金Open Foundation of Nano-mineral Materials and Application of the Ministry of Education Engineering Research Center(NGM2019KF029)The University-Industry Collaboration Program with Anhui Dushi High-tech Glass Co.Ltd.(880111)~~
基金financially supported by the Natural Science Foundation of Fujian Province (2011J05024)
文摘CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperature were almost the same. The SBEX of CdIn2S4 products decreased when the synthesized temperature increased, and the largest SBET was 33.16 m2 g-1 (120 ℃ sample). The degradation of methyl orange (MO) under the visible-light irradiation had been used as a probe reaction to investigate the photocatalytic activity of the as-prepared CdIn2S4, which showed that the CdIn2S4 sample synthesized at 120 ℃ presented the best photocatalytic activity for MO degradation.
基金the National Natural Science Foundation of China(21975084,51672089)Special Funding on Applied Science and Technology in Guangdong(2017B020238005)+2 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)State Scholarship Fund of China Scholarship Council(200808440114)the Ding Ying Talent Project of South China Agricultural University for their support
文摘Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 51372173, 21673160, and 51420105002), Natural Science Foundation of Zhejiang for Distinguished Young Scholars (No. LR16B010002), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201409SIC), and startup funds of Syracuse University.
文摘Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)-two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent- mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/ CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm^-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type II band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalyfic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.