期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进轻量化的FCM-YOLOv8n钢材表面缺陷检测
被引量:
2
1
作者
梁礼明
陈康泉
+1 位作者
陈林俊
龙鹏威
《光电工程》
北大核心
2025年第2期108-119,共12页
针对现有钢材表面缺陷检测算法在资源消耗、检测精度和效率等方面存在的不足,提出一种基于YOLOv8n的轻量级钢材缺陷检测算法(FCM-YOLOv8n)。该方法一是采用频率感知特征融合网络,高效提取并融合高频信息,以降低计算成本并提升检测速度;...
针对现有钢材表面缺陷检测算法在资源消耗、检测精度和效率等方面存在的不足,提出一种基于YOLOv8n的轻量级钢材缺陷检测算法(FCM-YOLOv8n)。该方法一是采用频率感知特征融合网络,高效提取并融合高频信息,以降低计算成本并提升检测速度;二是重构轻量化特征交互模块(Cc-C2f),有效保留空间和通道依赖关系,减少特征冗余,以降低模型参数量和计算复杂度;三是利用多谱注意力机制,从频域维度减少特征信息缺失,以提升复杂缺陷的识别准确度。在Severstal和NEU-DET钢材缺陷数据集上的实验结果表明,相较于YOLOv8n算法,FCMYOLOv8n算法的mAP@0.5分别提高2.2%和1.5%;参数量和复杂度分别降低0.5 M和1.5 G;FPS分别达到143 f/s和154 f/s,展示优异的实时性。该算法在检测精度、计算成本和效率之间实现良好的平衡,为边缘终端设备应用提供有力的支持。在GC10-DET数据集上的进一步验证表明,FCM-YOLOv8n相较于基线模型mAP@0.5提升2.9%,充分佐证其卓越的泛化能力。
展开更多
关键词
缺陷检测
YOLOv8n
频率感知特征融合网络
cc-c2f
多谱注意力
在线阅读
下载PDF
职称材料
题名
改进轻量化的FCM-YOLOv8n钢材表面缺陷检测
被引量:
2
1
作者
梁礼明
陈康泉
陈林俊
龙鹏威
机构
江西理工大学电气工程与自动化学院
出处
《光电工程》
北大核心
2025年第2期108-119,共12页
基金
国家自然科学基金资助项目(51365017,61463018)
江西省自然科学基金资助项目(20192BAB205084)
江西省教育厅科学技术研究青年项目(GJJ2200848)。
文摘
针对现有钢材表面缺陷检测算法在资源消耗、检测精度和效率等方面存在的不足,提出一种基于YOLOv8n的轻量级钢材缺陷检测算法(FCM-YOLOv8n)。该方法一是采用频率感知特征融合网络,高效提取并融合高频信息,以降低计算成本并提升检测速度;二是重构轻量化特征交互模块(Cc-C2f),有效保留空间和通道依赖关系,减少特征冗余,以降低模型参数量和计算复杂度;三是利用多谱注意力机制,从频域维度减少特征信息缺失,以提升复杂缺陷的识别准确度。在Severstal和NEU-DET钢材缺陷数据集上的实验结果表明,相较于YOLOv8n算法,FCMYOLOv8n算法的mAP@0.5分别提高2.2%和1.5%;参数量和复杂度分别降低0.5 M和1.5 G;FPS分别达到143 f/s和154 f/s,展示优异的实时性。该算法在检测精度、计算成本和效率之间实现良好的平衡,为边缘终端设备应用提供有力的支持。在GC10-DET数据集上的进一步验证表明,FCM-YOLOv8n相较于基线模型mAP@0.5提升2.9%,充分佐证其卓越的泛化能力。
关键词
缺陷检测
YOLOv8n
频率感知特征融合网络
cc-c2f
多谱注意力
Keywords
de
f
ect detection
YOLOv8n
f
requency-aware
f
eature
f
usion network
cc-c2f
multi-spectral attention
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进轻量化的FCM-YOLOv8n钢材表面缺陷检测
梁礼明
陈康泉
陈林俊
龙鹏威
《光电工程》
北大核心
2025
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部