We call a Cayley digraph Γ=Cay(G, S) normal for G if G_R, the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ) of Γ. In this paper we determine the normality of Cayley d...We call a Cayley digraph Γ=Cay(G, S) normal for G if G_R, the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ) of Γ. In this paper we determine the normality of Cayley digraphs of valency 2 on nonabelian groups of order 2p^2 (p odd prime). As a result, a family of nonnormal Cayley digraphs is found.展开更多
Let G be a finite group generated by S and C(G,S) the Cayley digraphs of G with connection set S.In this paper,we give some sufficient conditions for the existence of hamiltonian circuit in C(G,S),where G=Zm×H is...Let G be a finite group generated by S and C(G,S) the Cayley digraphs of G with connection set S.In this paper,we give some sufficient conditions for the existence of hamiltonian circuit in C(G,S),where G=Zm×H is a semiproduct of Zmby a subgroup H of G.In particular,if m is a prime,then the Cayley digraph of G has a hamiltonian circuit unless G=Zm×H.In addition,we introduce a new digraph operation,called φ-semiproduct of Γ1by Γ2and denoted by Γ1×Γ_φΓ2,in terms of mapping φ:V(Γ2)→{1,-1}.Furthermore we prove that C(Zm,{a})×_φ C(H,S) is also a Cayley digraph if φ is a homomorphism from H to{1,-1} ≤ Zm~*,which produces some classes of Cayley digraphs that have hamiltonian circuits.展开更多
Let G be a finite group and S G\(e),where e denotes the identity element of G.The Cayley digraph X(G,S)of G over the set S is the graph with vertex set G and edge set((a,sa)I E G,s E S).Two graphs are called cospectra...Let G be a finite group and S G\(e),where e denotes the identity element of G.The Cayley digraph X(G,S)of G over the set S is the graph with vertex set G and edge set((a,sa)I E G,s E S).Two graphs are called cospectral if their adjacency matrices have the same spectrum.We construct a large family of cospectral non-isomorphic Cayley digraphs over the dihedral group of order 6p for p≥11.展开更多
et G be a finite group of order n and S be a subset of G not containing the idelltityelement of G. Let p (0<p<1) be a fixed number. We define the set of all labelled Cayley digraphs X(G,S) (S≤G\{1}) of G as a s...et G be a finite group of order n and S be a subset of G not containing the idelltityelement of G. Let p (0<p<1) be a fixed number. We define the set of all labelled Cayley digraphs X(G,S) (S≤G\{1}) of G as a sample space and assign a probability measure by requiring P(a∈S)=p for any a∈C\{1}. Here it is shown that the probability of the set of Cayley digraphs of G with diameter 2 approaches 1 as the order n of G approaches infinity.展开更多
we prove that the Connectivities of Minimal Cayley Coset Digraphs are their regular degrees. Connectivity of transitive digraphs and a combinatorial propertyof finite groups Ann., Discrete Math., 8 1980 61--64 ...we prove that the Connectivities of Minimal Cayley Coset Digraphs are their regular degrees. Connectivity of transitive digraphs and a combinatorial propertyof finite groups Ann., Discrete Math., 8 1980 61--64 Meng Jixiang and Huang Qiongxiang On the connectivity of Cayley digraphs, to appear Sabidussi, G. Vertex transitive graphs Monatsh. Math., 68 1969 426--438 Watkins, M. E. Connectivity of transitive graphs J. Combin. Theory, 8 1970 23--29 Zemor, G. On positive and negative atoms of Cayley digraphs Discrete Applied Math., 23 1989 193--195 Department of Mathematics,Xinjiang University,Urumpi 830046.APPLIED MATHEMATICS 3. Statement of Inexact Method Here we assume F to be continuousely differentiable. Inexact Newton method was first studied in the solution of smooth equations (see ). Now, such a technique has been widely used in optimizations, nonlinear complementarity problems and nonsmooth equations (see, and , etc.) In order to establish the related inexact methods,we introduce a nonlinear operator T(x): R n R n . Its components are defined as follows: (T(x)p) i=[HL(2:1,Z;2,Z] (x k+p k) i, if i∈(x k), H i(x k)+ min {(p k) i,F i(x k) Tp k}, if i∈(x k), F i(x k)+F i(x k) Tp k, i∈(x k).(3.1) Then, it is clear that the subproblem (2.5) turns to T(x k)p k=0.(3.2) In inexact algorithm, we determine p k in the followinginexact way ( see ). ‖T(x k)p k‖ υ k‖H(x k)‖,(3.3) where υ k is a given positive sequence. It is then obviously that (3.2),or equivalently (2.5), is a special case of (3.3) corresponding to υ k=0 . In particular, (3.3) can be used as a termination rule of the iterative process for solving (2.5). The following proposition shows the existence of λ k satisfying (2.4). Proposition 3.1. Let F be continuously differe ntiable. υ k is chosen so that υ k for some constant ∈(0,1). Then p k generated by (3.3) is a descent direction of θ at x k, and for some constant σ∈(0, min (1/2,1- holds θ(x k)-θ(x k+λ kp k) 2σλ kθ(x k)(3.4) for all sufficiently small λ k>0. Proof For simplification, we omit the lower subscripts k and denote (x k) i , H i(x k) , (BH(x k)p k) i , etc.by x i , H i , (BHp) i , etc. respectively. To estimate the directional derivative of θ at x k along p k , we divide it into three parts: D p k θ(x k)=H T(x k)BH(x k)p k=T 1+T 2+T 3,(3.5) where T 1=Σ i∈α k H i(BHp) i , T 2=Σ i∈β k H i(BHp) i , T 3=Σ i∈γ k H i(BHp) i . Consider i∈α k= k∪α -(x k) . In this case, we always have H i(BH(x)p) i=H i 2+H i(x i+p i) . If i∈ k , then H i(BHp) i -H i 2+|H i‖(T(x)p) i|. If i∈α -(x k) , then x i<0 . We have either x i+p i 0 , or x i+p i<0 . When x i+p i 0 , we get H i(BH(x)p) i -H i 2 .In the later case, x i+p i<0 , so H i(BH(x)p) i=-H i 2+|H i‖x i+p i|. Then, by elementary computation, we deduce that T 1 -Σi∈α kH i 2+Σ i∈α k|H i‖(T(x)p) i|.(3.6) Received March 1, 1995. 1991 MR Subject Classification: 05C25展开更多
基金supported by the Postdoctoral Science Foundation of ChinaMorningside Center of Mathematics. Chinese Academy of Sciences
文摘We call a Cayley digraph Γ=Cay(G, S) normal for G if G_R, the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ) of Γ. In this paper we determine the normality of Cayley digraphs of valency 2 on nonabelian groups of order 2p^2 (p odd prime). As a result, a family of nonnormal Cayley digraphs is found.
基金sponsored by the National Natural Science Foundation of China (No. 11671344)Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2022D01A218)the Scientific Research Projects of Universities in Xinjiang Province (No. XJEDU2019Y030)
文摘Let G be a finite group generated by S and C(G,S) the Cayley digraphs of G with connection set S.In this paper,we give some sufficient conditions for the existence of hamiltonian circuit in C(G,S),where G=Zm×H is a semiproduct of Zmby a subgroup H of G.In particular,if m is a prime,then the Cayley digraph of G has a hamiltonian circuit unless G=Zm×H.In addition,we introduce a new digraph operation,called φ-semiproduct of Γ1by Γ2and denoted by Γ1×Γ_φΓ2,in terms of mapping φ:V(Γ2)→{1,-1}.Furthermore we prove that C(Zm,{a})×_φ C(H,S) is also a Cayley digraph if φ is a homomorphism from H to{1,-1} ≤ Zm~*,which produces some classes of Cayley digraphs that have hamiltonian circuits.
基金L.H.Feng and W.J.Liu were supported by NSFC(Nos.12271527,12471022)L.Tang was supported by NSFC(No.12201202)Hunan Provincial Natural Science Foundation(Nos.2020JJ5096,2020JJ4233).
文摘Let G be a finite group and S G\(e),where e denotes the identity element of G.The Cayley digraph X(G,S)of G over the set S is the graph with vertex set G and edge set((a,sa)I E G,s E S).Two graphs are called cospectral if their adjacency matrices have the same spectrum.We construct a large family of cospectral non-isomorphic Cayley digraphs over the dihedral group of order 6p for p≥11.
文摘et G be a finite group of order n and S be a subset of G not containing the idelltityelement of G. Let p (0<p<1) be a fixed number. We define the set of all labelled Cayley digraphs X(G,S) (S≤G\{1}) of G as a sample space and assign a probability measure by requiring P(a∈S)=p for any a∈C\{1}. Here it is shown that the probability of the set of Cayley digraphs of G with diameter 2 approaches 1 as the order n of G approaches infinity.
文摘we prove that the Connectivities of Minimal Cayley Coset Digraphs are their regular degrees. Connectivity of transitive digraphs and a combinatorial propertyof finite groups Ann., Discrete Math., 8 1980 61--64 Meng Jixiang and Huang Qiongxiang On the connectivity of Cayley digraphs, to appear Sabidussi, G. Vertex transitive graphs Monatsh. Math., 68 1969 426--438 Watkins, M. E. Connectivity of transitive graphs J. Combin. Theory, 8 1970 23--29 Zemor, G. On positive and negative atoms of Cayley digraphs Discrete Applied Math., 23 1989 193--195 Department of Mathematics,Xinjiang University,Urumpi 830046.APPLIED MATHEMATICS 3. Statement of Inexact Method Here we assume F to be continuousely differentiable. Inexact Newton method was first studied in the solution of smooth equations (see ). Now, such a technique has been widely used in optimizations, nonlinear complementarity problems and nonsmooth equations (see, and , etc.) In order to establish the related inexact methods,we introduce a nonlinear operator T(x): R n R n . Its components are defined as follows: (T(x)p) i=[HL(2:1,Z;2,Z] (x k+p k) i, if i∈(x k), H i(x k)+ min {(p k) i,F i(x k) Tp k}, if i∈(x k), F i(x k)+F i(x k) Tp k, i∈(x k).(3.1) Then, it is clear that the subproblem (2.5) turns to T(x k)p k=0.(3.2) In inexact algorithm, we determine p k in the followinginexact way ( see ). ‖T(x k)p k‖ υ k‖H(x k)‖,(3.3) where υ k is a given positive sequence. It is then obviously that (3.2),or equivalently (2.5), is a special case of (3.3) corresponding to υ k=0 . In particular, (3.3) can be used as a termination rule of the iterative process for solving (2.5). The following proposition shows the existence of λ k satisfying (2.4). Proposition 3.1. Let F be continuously differe ntiable. υ k is chosen so that υ k for some constant ∈(0,1). Then p k generated by (3.3) is a descent direction of θ at x k, and for some constant σ∈(0, min (1/2,1- holds θ(x k)-θ(x k+λ kp k) 2σλ kθ(x k)(3.4) for all sufficiently small λ k>0. Proof For simplification, we omit the lower subscripts k and denote (x k) i , H i(x k) , (BH(x k)p k) i , etc.by x i , H i , (BHp) i , etc. respectively. To estimate the directional derivative of θ at x k along p k , we divide it into three parts: D p k θ(x k)=H T(x k)BH(x k)p k=T 1+T 2+T 3,(3.5) where T 1=Σ i∈α k H i(BHp) i , T 2=Σ i∈β k H i(BHp) i , T 3=Σ i∈γ k H i(BHp) i . Consider i∈α k= k∪α -(x k) . In this case, we always have H i(BH(x)p) i=H i 2+H i(x i+p i) . If i∈ k , then H i(BHp) i -H i 2+|H i‖(T(x)p) i|. If i∈α -(x k) , then x i<0 . We have either x i+p i 0 , or x i+p i<0 . When x i+p i 0 , we get H i(BH(x)p) i -H i 2 .In the later case, x i+p i<0 , so H i(BH(x)p) i=-H i 2+|H i‖x i+p i|. Then, by elementary computation, we deduce that T 1 -Σi∈α kH i 2+Σ i∈α k|H i‖(T(x)p) i|.(3.6) Received March 1, 1995. 1991 MR Subject Classification: 05C25