Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(...Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(x)+f(y)+2f(z)(0.3)for all x, y, z ∈ X, then the mapping f : X →Y is Cauchy additive. Furthermore, we prove the Cauchy-Rassias stability of the functional equations (0.1), (0.2) and (0.3) in Banach spaces. The results are applied to investigate isomorphisms between unital Banach algebras.展开更多
基金Supported by Korea Research Foundation Grant KRF-2005-070-C00009
文摘Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(x)+f(y)+2f(z)(0.3)for all x, y, z ∈ X, then the mapping f : X →Y is Cauchy additive. Furthermore, we prove the Cauchy-Rassias stability of the functional equations (0.1), (0.2) and (0.3) in Banach spaces. The results are applied to investigate isomorphisms between unital Banach algebras.