期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Succinonitrile-driven cathode-electrolyte interface modulation for stable and high-rate Prussian white cathode in potassium-ion batteries
1
作者 Hao Ouyang Rui Li +4 位作者 Yongqing Cai Jilei Liu Heng Li Shen Lai Shi Chen 《Journal of Energy Chemistry》 2025年第10期280-287,共8页
Iron-based Prussian white(PW)materials have attracted considerable attention as promising cathodes for potassium-ion batteries(PIBs)due to their high capacity,easy preparation,and economic merits.However,the intrinsic... Iron-based Prussian white(PW)materials have attracted considerable attention as promising cathodes for potassium-ion batteries(PIBs)due to their high capacity,easy preparation,and economic merits.However,the intrinsic iron dissolution and uncontrollable cathode-electrolyte interface(CEI)formation in conventional organic electrolytes severely hinder their long-term cycling stability.Herein,we employ succinonitrile(SN),a bifunctional electrolyte additive,to suppress the iron dissolution and promote thin,uniform,and stable CEI formation of the PW cathode,thus improving its structural stability.Benefited from the coordination between the cyano groups in SN and iron atoms,this molecule can preferentially adsorb on the surface of PW to mitigate iron dissolution.SN also facilitates the decomposition of anions in potassium salt rather than organic solvents in electrolyte due to the attractive reaction between SN and anions.Consequently,the PW cathode with SN additive provides better electrochemical reversibility,showing capacity retention of 93.6%after 3000 cycles at 5C.In comparison,without SN,the capacity retention is only 87.4%after 1000 cycles under the same conditions.Moreover,the full cells of PW matched with commercial graphite(Gr)achieve stable cycling for 3500 cycles at a high rate of 20C,with an exceptional capacity decay of only 0.005%per cycle,surpassing the majority of recently reported results in literature. 展开更多
关键词 Potassium-ion batteries Prussian white cathode-electrolyte interface Electrolyte additive High-rate
在线阅读 下载PDF
Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries
2
作者 Mengting Liu Ling-Jiao Hu +6 位作者 Zhao-Kun Guan Tian-Ling Chen Xin-Yu Zhang Shuai Sun Ruoli Shi Panpan Jing Peng-Fei Wang 《Nano-Micro Letters》 2025年第4期181-211,共31页
Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,an... Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,and environmental friendliness.However,their practical application is significantly impeded by several serious issues that arise at the cathode-electrolyte interface,such as interface structure degradation including the uneven deposition of Li_(2)S,unstable cathode-electrolyte interphase(CEI)layer and intermediate polysulfide shuttle effect.Thus,an optimized cathode-electrolyte interface along with optimized electrodes is required for overall improvement.Herein,we comprehensively outline the challenges and corresponding strategies,including electrolyte optimization to create a dense CEI layer,regulating the Li_(2)S deposition pattern,and inhibiting the shuttle effect with regard to the solid-liquid-solid pathway,the transformation from solid-liquid-solid to solid-solid pathway,and solid-solid pathway at the cathode-electrolyte interface.In order to spur more perceptive research and hasten the widespread use of lithium-sulfur batteries,viewpoints on designing a stable interface with a deep comprehension are also put forth. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect cathode-electrolyte interface Structural enhancement Reaction pathway
在线阅读 下载PDF
Rapid anion transporting and mechanically robust cathode-electrolyte interphase for ultrafast and highly reversible dual-ion batteries within a wide temperature range
3
作者 Hubiao Pan Xin Gu +4 位作者 Xinyu Lv Fengchun Li Fei Pang Yanli Zhou Mingbo Wu 《Journal of Energy Chemistry》 2025年第10期100-108,共9页
High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based ... High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability. 展开更多
关键词 Dual-ion batteries Graphite cathode Electrolyte additive cathode-electrolyte interphase Wide temperature range
在线阅读 下载PDF
Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries 被引量:9
4
作者 Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期197-218,共22页
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It ... The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It is crucial to construct a robust cathode-electrolyte interphase(CEI)for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions.Herein,this review presents a brief historic evolution of the mechanism of CEI formation and compositions,the state-of-art characterizations and modeling associated with CEI,and how to construct robust CEI from a practical electrolyte design perspective.The focus on electrolyte design is categorized into three parts:CEI-forming additives,anti-oxidation solvents,and lithium salts.Moreover,practical considerations for electrolyte design applications are proposed.This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes. 展开更多
关键词 cathode-electrolyte interphase High-voltage cathodes Interfacial chemistry Electrolyte design Batteries.
在线阅读 下载PDF
Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics 被引量:1
5
作者 Sahithya REDDIVARI Christian LASTOSKIE +1 位作者 Ruofei WU Junliang ZHANG 《Frontiers in Energy》 SCIE CSCD 2017年第3期365-373,共9页
Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other ca... Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn^2+ in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxida- tion products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electro- lyre solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results. 展开更多
关键词 lithium manganese oxide batteries reactiveforce field (ReaxFF) cathode-electrolyte interface layer molecular dynamics
原文传递
Electrolyte engineering and interphase chemistry toward high-performance nickel-rich cathodes:Progress and perspectives
6
作者 Shangjuan Yang Ke Yang +4 位作者 Jinshuo Mi Shaoke Guo Xufei An Hai Su Yanbing He 《Materials Reports(Energy)》 2025年第1期19-31,共13页
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f... Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathodes Solvation structure regulation Electrolyte additives cathode-electrolyte interphase High charging cut-off voltage
在线阅读 下载PDF
Multifunctional sulfonate additive induced CEI layer enables ultra-stable PEO based solid-state sodium batteries
7
作者 Jing-Chao Liu Tao You +5 位作者 Yi-Fan Zhao Feng-Quan Liu Jie-Dong Li Long-Long Wang Chen Wang Lin Li 《Rare Metals》 2025年第6期3817-3826,共10页
Polyethylene oxide(PEO)-based solid polymer electrolytes are considered as promising material for solidstate sodium metallic batteries(SSMBs).However,their poor interfacial stability with high-voltage cathode limits t... Polyethylene oxide(PEO)-based solid polymer electrolytes are considered as promising material for solidstate sodium metallic batteries(SSMBs).However,their poor interfacial stability with high-voltage cathode limits their application in high-energy–density solid-state batteries.Herein,a uniform,sulfur-containing inorganic–organic composite cathode–electrolyte interphase layer was in situ formed by the addition of sodium polyvinyl sulfonate(NaPVS).The 5 wt%NaPVS-Na_(3)V_(2)(PO_(4))_(3)(NVP)|PEOsodium hexauorophosphate(NaPF6)|Na battery shows a higher initial capacity of 111.2 mAh.g^(-1)and an ultra-high capacity retention of 90.5%after 300 cycles.The 5 wt%NaPVS-Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)|PEO-NaPF_(6)|Na battery with the high cutoff voltage of 4.2 V showed a specific discharge capacity of 88.9 mAh.g^(-1)at 0.5C for 100 cycles with a capacity retention of 79%,which is much better than that of the pristine-NVPF(PR-NVPF)|PEO-NaPF_(6)|Na battery(33.2%).The addition of NaPVS not only enhances the diffusion kinetics at the interface but also improves the rate performance and stability of the battery,thus bolstering its viability for high-energy applications.In situ phase tracking further elucidates that NaPVS effectively mitigates self-discharge induced by the oxidative decomposition of PEO at high temperature.This work proposes a general strategy to maintain the structural stability of the cathode–electrolyte interface in PEO-based high-performance SSMBs. 展开更多
关键词 Solid-state sodium metallic batteries PEObased electrolyte cathode-electrolyte interphase layer Sodium polyvinyl sulfonate Cathode additive
原文传递
Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries
8
作者 Mei-Chen Liu Qing-Song Liu +4 位作者 Yi-Zhou Quan Jia-Ling Yu Gang Wu Xiu-Li Wang Yu-Zhong Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期418-424,共7页
Safety and energy density are significant for lithium-ion batteries(LIBs),and the flammable organic elec-trolyte is one of the most critical causes of the safety problem of LIBs.Although LiNi0.8 Co 0.1 Mn 0.1 O 2(NCM8... Safety and energy density are significant for lithium-ion batteries(LIBs),and the flammable organic elec-trolyte is one of the most critical causes of the safety problem of LIBs.Although LiNi0.8 Co 0.1 Mn 0.1 O 2(NCM811)cathode with high capacity can improve the energy density,the interface stability between NCM811 cathode and electrolytes needs to be improved.Herein,we report a multifunctional additive,diethyl(2-(triethoxysilyl)ethyl)phosphonate(DETSP),which can suppress the flammability of the elec-trolyte and enhance the cycling stability of NCM811 cathode with a capacity retention of 89.9%after 400 cycles at 1 C,while that of the blank electrolyte is merely 61.3%.In addition,DETSP is compati-ble well with the graphite anode without impairing the electrochemical performances.Significantly,the performance and safety of NCM811/graphite full cells are also improved.Experimental and theoretical re-sults demonstrate that DETSP can scavenge acidic byproducts and is beneficial to form a stable cathode-electrolyte interface(CEI).Accordingly,DETSP can potentially be an effective solution to ameliorating the safety of the commercial electrolyte and improving the stability of high-voltage cathodes. 展开更多
关键词 Electrolyte additive NCM Lithium-ion batteries SAFETY cathode-electrolyte interface
原文传递
Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces
9
作者 Hongjie Xu Yujie Su +4 位作者 Chenggong Zheng Yuchen Wang Yuping Tong Zhongzheng Yang Junhua Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期242-251,共10页
In recent years,due to the increasing demand for portable electronic devices,rechargeable solid-state battery technology has developed rapidly.Lithium-ion batteries are the systems of choice,offering high energy densi... In recent years,due to the increasing demand for portable electronic devices,rechargeable solid-state battery technology has developed rapidly.Lithium-ion batteries are the systems of choice,offering high energy density,flexible and lightweight design,and longer lifespan than comparable battery technologies.Therefore,a better understanding of the relationship between electrochemical mechanism and structural properties from theory and experiment will enable us to accelerate the development of high-performance and security batteries.This review discusses the interplay between theoretical calculation and experiment in the study of lithium ion battery materials.We introduce the application of theoretical calculation method in solid-state batteries through the combination of theory and experiment.We present the concept and assembly technology of solid-state batteries are reviewed.The basic parameters of solid-state electrolytes,especially sulfide-based solid-state electrolytes and their interface mechanisms with high-voltage cathode materials,are analyzed by theoretical methods.We present an overview on the scientific challenges,fundamental mechanisms,and design strategies for solid-state batteries,especially focusing on the issues of stability on solid-state electrolytes and the associated interfaces with both cathode and electrolyte.Owing to the theoretical models,we can not only reveal the unprecedented mechanism from the atomic scale,but also analyze the interface problems in the battery thoroughly,thus effectively designing more promising electrolyte and interface coating materials.It blazed a new trial for engineering an interphase with improved interfacial compatibility for a long-term cyclability. 展开更多
关键词 Theoretical simulation Sulfide-based electrolytes All solid-state battery cathode-electrolyte interface Interface compatibility
原文传递
Stabilization of cathode electrolyte interphase for aqueous zinc-ion batteries
10
作者 Zhenjie Yao Wenyao Zhang Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期359-386,共28页
Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacit... Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacity attenuation,insufficient cycle life,and severe safety issues.Evolving the researching of CEI formation,composition,dynamic structure,and reaction mechanisms would help in understanding the fundamental electrochemistry at CEI such as electron and ion transport processes,further strengthening the specific capacity,rate,and cycle performance of the cathode materials.In this review,we summarized the latest progress in understanding interfacial reaction mechanisms and ion dynamic behavior,emphasizing the impact of surface-specific adsorption and solvation behaviors on the interface's ultimate structure and chemical composition.Subsequently,the significant challenges that persist in CEI formation mechanisms,such as cathodic dissolution,by-product formation,electrostatic interactions,constrained electrochemical windows,oxygen evolution reaction,overpotentials,phase transitions,and additional factors,were discussed.These challenges are explored to identify triggers contributing to the depletion of active materials and alterations in the composition or state of the CEI.Ultimately,with a deep comprehension of interfacial behaviors,the review articulates innovative optimization strategies through a detailed categorization of approaches in electrolyte engineering,cathode engineering,and artificial CEI development.Furthermore,future challenges and development directions of CEI are presented.We hope to offer insights for constructing robust CEI films to achieve high performance aqueous zinc-ion batteries. 展开更多
关键词 Aqueous zinc-ion batteries cathode-electrolyte interphase Energy storage
在线阅读 下载PDF
Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials 被引量:3
11
作者 Longshan Li Dingming Wang +7 位作者 Gaojie Xu Qian Zhou Jun Ma Jianjun Zhang Aobing Du Zili Cui Xinhong Zhou Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期280-292,共13页
In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2... In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs. 展开更多
关键词 Nickel-rich layered oxide cathode Electrolyte additive Functional group Working mechanism cathode-electrolyte interphase(CEI)
在线阅读 下载PDF
Improving Interfacial Electrochemistry of LiNi0.5Mn1.5O4 Cathode Coated by Mn3O4 被引量:2
12
作者 Miao-miao Deng Da-wei Zhang +3 位作者 Yu Shao Xiao-dong He Aqsa Yasmin Chun-hua Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第4期485-490,I0002,共7页
In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×1... In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles. 展开更多
关键词 Lithium-ion batteries Cathode materials Spinel lithium nickel manganese oxide Surface modification cathode-electrolyte interphase
在线阅读 下载PDF
Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries
13
作者 Ji Won Kim Kwangeun Jung Taeeun Yim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期70-76,共7页
Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling ... Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,we propose a one-step surface modification method that uses a task-specific precursor,N,N,N,N-tetraethylsulfamide(NTESA),to improve interfacial stability of Ni-rich NCM cathode materials.The unstable surface properties of Ni-rich NCM cathode material are improved by embedding an artificial cathode-electrolyte interphase(CEI)layer on the cathode surface by heat treatment of the Ni-rich NCM cathode material with an NTESA precursor at low temperature.Our material analyses indicate that this approach allows the formation of amine-and sulfone-functionalized CEI layers on the surface of Ni-rich NCM cathode material without changing the layered structure of the cathode material.NTESA-functionalized Ni-rich NCM cathode materials exhibit improved cycling retention after 100 cycles:for example,a cell cycled with a 3.0 NTESA-modified NCM811 cathode presents the highest retention ratio of 88.3%,whereas a cell cycled with a non-functionalized NCM811 cathode suffers from rapid fading of the cycling performance(68.4%).Our additional SEM,XPS,and EIS analyses indicate that electrolyte decomposition is suppressed during electrochemical cycling,thereby leading to smaller increases in the internal resistances.ICP-MS analyses of the cycled anodes also indicate that the NTESA-based artificial CEI layer inhibits the dissolution of transition metal components from the Ni-rich NCM cathode materials,thereby contributing to an improved overall electrochemical performance of the cell. 展开更多
关键词 Lithium-ion battery CATHODE cathode-electrolyte interphase N N N N-Tetraethylsulfamide Electrochemical performance
原文传递
Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries 被引量:8
14
作者 Jia-Lin Yang Xin-Xin Zhao +5 位作者 Wen-Hao Li Hao-Jie Liang Zhen-Yi Gu Yan Liu Miao Du Xing-Long Wu 《eScience》 2022年第1期95-101,共7页
The amount of spent lithium-ion batteries (LIBs) is constantly increasing as their popularity grows. It is important todevelop a recycling method that cannot only convert large amounts of waste anode graphite into hig... The amount of spent lithium-ion batteries (LIBs) is constantly increasing as their popularity grows. It is important todevelop a recycling method that cannot only convert large amounts of waste anode graphite into high value-addedproducts but is also simple and environmentally friendly. In this work, spent graphite from an anode was transformed into a cathode for dual-ion batteries (DIBs) through a two-step treatment. This method enables the crystalstructure and morphology of spent graphite to recover from the adverse effects of long cycling and be restored to aregular layered structure with appropriate layer spacing for anion intercalation. In addition, pyrolysis of the solidelectrolyte interphase into an amorphous carbon layer prevents the electrode from degrading and improves itscycling performance. The recycled negative graphite has a high reversible capacity of 87 mAh g^(-1) at 200 mA g^(-1),and its rate performance when used as a cathode in DIBs is comparable to that of commercial graphite. This simplerecycling idea turns spent anode graphite into a cathode material with attractive potential and superior electrochemical performance, genuinely achieving sustainable energy use. It also provides a new method for recoveringexhausted batteries. 展开更多
关键词 Spent lithium-ion battery GRAPHITE Reuse Dual-ion batteries cathode-electrolyte interphase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部