Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalys...Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship.展开更多
Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental ...Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.展开更多
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density...Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.展开更多
Electrolytes play a key role in determining the electrochemical performance,safety,and lifespan of potassium-based batteries,making their selection and optimization a critical area of research.This study systematicall...Electrolytes play a key role in determining the electrochemical performance,safety,and lifespan of potassium-based batteries,making their selection and optimization a critical area of research.This study systematically investigates the effects of two major potassium-based battery electrolytes,potassium hexafluorophosphate(KPF_(6))and potassium difluorosulfonimide(KFSI)in ethylene carbonate/diethyl carbonate(EC/DEC)solvents,on battery performance,solid electrolyte interphase(SEI)stability,aluminum(Al)current collector corrosion behavior,electrochemical stability window,and dendrite growth issue.Experimental results reveal that KFSI electrolyte significantly outperforms KPF_(6)in terms of cycling stability,rate capability,and Coulombic efficiency(CE),primarily due to the formation of a high-quality SEI on electrode surface.Through X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(TOF-SIMS)analyses,we construct the SEI structure for both electrolytes,and find that the SEI formed by KFSI is more uniform and stable.Additionally,KPF_(6)exhibits weaker corrosivity towards the Al current collector compared to KFSI due to the formation of an AlF_(3) layer with higher oxidation stability on Al surface.Furthermore,in-situ optical microscopy observations indicate that the dendrite growth in KFSI electrolyte is more uniform,preventing the aggregates.These findings provide essential experimental evidence and theoretical support for optimizing the electrolyte in potassium-based batteries.展开更多
The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and fla...The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs.展开更多
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.L...Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
The dynamic evolution of surface electrochemical potential of the electrolyte plays a key role in the performance of solid-state electrochemical devices,while its real-time characterization remains challenging.Here,we...The dynamic evolution of surface electrochemical potential of the electrolyte plays a key role in the performance of solid-state electrochemical devices,while its real-time characterization remains challenging.Here,we visualize the dynamic evolution of the surface electrochemical potential on yttria-stabilized zirconia(YSZ)in a planar Au|YSZ|Au model cell,using spatially resolved photoelectron-based techniques including photoemission electron microscopy(PEEM)and micro-region X-ray photoelectron spectroscopy(μ-XPS).PEEM reveals two sequential reaction fronts in YSZ under cathodic polarization,corresponding to the evolution of the chemical potential of oxygen ions,with a faster propagation speed on the top surface and a slower one in the near-surface region.XPS measurements quantitatively reveal the time-dependent electric potential distribution across YSZ surface.COMSOL simulations confirm the presence of a stronger electric field at the top surface,particularly at the advancing reaction fronts,compared to the near-surface region.The critical role of the electric field in driving surface reactions is further supported by the enhanced reactions observed at the tips of the zigzag-shaped electrode edges.This work offers mechanistic insights into the coupling between electrochemical potential dynamics and electrolyte reactions.展开更多
This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted fr...This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.展开更多
Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR o...Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR owing to their elevated hydrogen evolution reaction(HER)overpotential and eco-friendly characteristics.We have synthesized In2O_(3)nanofibers rich in oxygen vacancies using the electrospinning technique.The resultant 500-In_(2)O_(3)exhibited superior performance in converting CO_(2)RR to HCOOH,achieving an impressive formate Faradaic efficiency(FE)of 92.1% at a current density of-600 mA cm^(-2).Moreover,it demonstrated remarkable stability,maintaining its performance over 100 h at a current density of-300 mA cm^(-2)under a neutral electrolyte.Density functio nal theory(DFT)calculations,in conjunction with spectroscopic characterizations,have revealed that a Cl-modified In catalyst exhibits a lowered energy barrier for the formation of*HCOOH,while simultaneously inhibiting the generation of*H,in contrast to its pristine In counterpart.Ultimately,we successfully engineered a dual-electrode system capable of simultaneously producing formate at both the cathode and the anode.At a current density of-100 mA cm^(-2),our system achieves a reduction in energy consumption by 12.5% and a significant enhancement in electrical energy conversion efficiency by 39.9%.展开更多
Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-dope...Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-doped cobalt molybdate(WDCMO)catalyst was synthesized for efficient and durable OER under neutral electrolyte.It is demonstrated that catalyst reconstruction is suppressed by W doping,which stabilizes the Co-O-Mo point-to-point connection in CoMoO_(4) architecture and stimulates to a lower valence state of active sites over the surface phase.Thereby,the surface structure maintains to avoid compound dissolution caused by over-oxidation during OER.Meanwhile,the WDCMO catalyst promotes charge transfer and optimizes*OH intermediate adsorption,which improves reaction kinetics and intrinsic activity.Consequently,the WDCMO electrode exhibits an overpotential of 302 mV at 10 mA cm^(-2) in neutral electrolyte with an improvement of 182 mV compared with CoMoO4 electrode.Furthermore,W doping significantly improves the electrode stability from 50 h to more than 320 h,with a suppressive potential attenuation from 2.82 to 0.29 mV h^(-1).This work will shed new light on designing rational electrocatalysts for neutral OER.展开更多
Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic k...Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates.In this work,we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N_(4)moieties.The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state.The optimized spin-electron filled state(t2g^(4)eg^(1))of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of^(∗)OH desorption.Consequently,Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C,showing a more positive half-wave potential of 0.753 V(vs.RHE)in 0.1 mol/L phosphate buffered saline.In addition,Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm^(−2)and long-term stability for 200 h.This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.展开更多
Hybrid electrolyte lithium-air batteries(HELABs)face challenges such as the high cathode overpotential,cycling instability,and catalyst degradation,limiting their widespread use in practical applications.This study em...Hybrid electrolyte lithium-air batteries(HELABs)face challenges such as the high cathode overpotential,cycling instability,and catalyst degradation,limiting their widespread use in practical applications.This study employs density functional theory(DFT)to analyze the oxygen reduction reaction(ORR)free energy profile,overpotential,and adsorption energy of two-dimensional Ti_(3)C_(2)T_(x) as a cathode catalyst.The optimal oxygen adsorption sites on Ti_(3)C_(2)T_(x) surfaces are identified,and the charge transfer,band structure,density of states,and bonding characteristics after oxygen adsorption are quantitatively analyzed.Results suggest that Ti_(3)C_(2)T_(x) exhibits low overpotentials when used as a HELAB cathode electrocatalyst,with oxygen preferentially adsorbing at the top and bridge sites of Ti_(3)C_(2) and Ti_(3)C_(2)F2,respectively.These findings offer valuable insights for the application of MXenes in HELABs.展开更多
Fe_2O_3 nanorods and hexagonal nanoplates were synthesized and used as the promoters for Pt electrocatalysts toward the methanol oxidation reaction(MOR) in an alkaline electrolyte.The catalysts were characterized by...Fe_2O_3 nanorods and hexagonal nanoplates were synthesized and used as the promoters for Pt electrocatalysts toward the methanol oxidation reaction(MOR) in an alkaline electrolyte.The catalysts were characterized by scanning electron microscopy,transmission electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,cyclic voltammetry and chronoamperometry.The results show that the presence of Fe_2O_3 in the electrocatalysts can promote the kinetic processes of MOR on Pt,and this promoting effect is related to the morphology of the Fe_2O_3 promoter.The catalyst with Fe_2O_3 nanorods as the promoter(Pt-Fe_2O_3/C-R) exhibits much higher catalytic activity and stability than that with Fe_2O_3 nanoplates as the promoter(Pt-Fe_2O_3/C-P).The mass activity and specific activity of Pt in a Pt-Fe_2O_3/C-R catalyst are 5.32 A/mgpt and 162.7 A/m^2_(Pt),respectively,which are approximately 1.67 and 2.04 times those of the Pt-Fe_2O_3/C-P catalyst,and 4.19 and 6.16 times those of a commercial PtRu/C catalyst,respectively.Synergistic effects between Fe_2O_3 and Pt and the high content of Pt oxides in the catalysts are responsible for the improvement.These findings contribute not only to our understanding of the MOR mechanism but also to the development of advanced electrocatalysts with high catalytic properties for direct methanol fuel cells.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cell...Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.展开更多
Ammonia is a vital emerging energy carrier and storage medium in the future hydrogen economy, even presenting relevant advantages compared with methanol due to the higher hydrogen content(17.6 wt% for ammonia versus 1...Ammonia is a vital emerging energy carrier and storage medium in the future hydrogen economy, even presenting relevant advantages compared with methanol due to the higher hydrogen content(17.6 wt% for ammonia versus 12.5 wt% for methanol). The rapidly growing demand for ammonia is still dependent on the conventional high-temperature and high-pressure Haber–Bosch process, which can deliver a conversion rate of about 10%–15%. However, the overall process requires a large amount of fossil fuels,resulting in serious environmental problems. Alternatively, electrochemical routes show the potential to greatly reduce the energy consumption, including sustainable energy sources and simplify the reactor design. Electrolytes perform as indispensable reaction medium during electrochemical processes, which can be further classified into solid oxide electrolytes, molten salt electrolytes, polymer electrolytes, and liquid electrolytes. In this review, recent developments and advances of the electrocatalytic ammonia synthesis catalyzed by a series of functional materials on the basis of aforementioned electrolytes have been summarized and discussed, along with the presentation and evaluation of catalyst preparation, reaction parameters and equipment.展开更多
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg...The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst.展开更多
基金Swiss National Science Foundation through its PRIM A grant(grant No.PR00P2_193111)the NCCR MARVEL,a National Centre of Competence in Researchfunded by the Swiss National Science Foundation。
文摘Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship.
基金supported by the National Natural Science Foundation of China(52002297)National Key R&D Program of China(2022VFB2404800)+1 种基金Wuhan Yellow Crane Talents Program,China Postdoctoral Science Foundation(No.2024M752495)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
基金supported by the Natural Science Foundation of China(Nos.52125202,52202100,and U24A2065)the Natural Science Foundation of Jiangsu Province(BK20243016)Fundamental Research Funds for the Central Universities,China Postdoctoral Science Foundation(No.2024T171166).
文摘Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.
基金supported by the Innovation Capability Support Program of Shaanxi(No.2024CX-GXPT-12)the National Natural Science Foundation of China(No.22403074).
文摘Electrolytes play a key role in determining the electrochemical performance,safety,and lifespan of potassium-based batteries,making their selection and optimization a critical area of research.This study systematically investigates the effects of two major potassium-based battery electrolytes,potassium hexafluorophosphate(KPF_(6))and potassium difluorosulfonimide(KFSI)in ethylene carbonate/diethyl carbonate(EC/DEC)solvents,on battery performance,solid electrolyte interphase(SEI)stability,aluminum(Al)current collector corrosion behavior,electrochemical stability window,and dendrite growth issue.Experimental results reveal that KFSI electrolyte significantly outperforms KPF_(6)in terms of cycling stability,rate capability,and Coulombic efficiency(CE),primarily due to the formation of a high-quality SEI on electrode surface.Through X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(TOF-SIMS)analyses,we construct the SEI structure for both electrolytes,and find that the SEI formed by KFSI is more uniform and stable.Additionally,KPF_(6)exhibits weaker corrosivity towards the Al current collector compared to KFSI due to the formation of an AlF_(3) layer with higher oxidation stability on Al surface.Furthermore,in-situ optical microscopy observations indicate that the dendrite growth in KFSI electrolyte is more uniform,preventing the aggregates.These findings provide essential experimental evidence and theoretical support for optimizing the electrolyte in potassium-based batteries.
基金supported by the National Natural Science Foundation of China(32501592,32271814,32301530,32471806)Young Elite Scientist Sponsorship Program by Cast(No.YESS20230242)+3 种基金Natural Science Foundation of Tianjin(23JCZDJC00630,24JCZDJC00630)the China Postdoctoral Science Foundation(2023M740563)Tianjin Enterprise Technology Commissioner Project(25YDTPJC00690)China Scholarship Council(202408120091,202408120105).
文摘The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs.
基金financially supported by Shenzhen Science and Technology Program(JCYJ20240813142900001)Guangdong Provincial Key Laboratory of New Energy Materials Service Safety。
文摘Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
基金financially supported by the National Key R&D Program of China(Nos.2022YFA1504500 and 2021YFA1502800)the National Natural Science Foundation of China(Nos.22372158,22332006,and 22288201)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0600300)iChEM and Photon Science Center for Carbon Neutrality.
文摘The dynamic evolution of surface electrochemical potential of the electrolyte plays a key role in the performance of solid-state electrochemical devices,while its real-time characterization remains challenging.Here,we visualize the dynamic evolution of the surface electrochemical potential on yttria-stabilized zirconia(YSZ)in a planar Au|YSZ|Au model cell,using spatially resolved photoelectron-based techniques including photoemission electron microscopy(PEEM)and micro-region X-ray photoelectron spectroscopy(μ-XPS).PEEM reveals two sequential reaction fronts in YSZ under cathodic polarization,corresponding to the evolution of the chemical potential of oxygen ions,with a faster propagation speed on the top surface and a slower one in the near-surface region.XPS measurements quantitatively reveal the time-dependent electric potential distribution across YSZ surface.COMSOL simulations confirm the presence of a stronger electric field at the top surface,particularly at the advancing reaction fronts,compared to the near-surface region.The critical role of the electric field in driving surface reactions is further supported by the enhanced reactions observed at the tips of the zigzag-shaped electrode edges.This work offers mechanistic insights into the coupling between electrochemical potential dynamics and electrolyte reactions.
文摘This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.
基金supported by the National Key R&D Program of China(2023YFA1508002)the National Natural Science Foundation of China(22472139,U23A2087,U22A20392,22227802,22372137,22172126 and 22102136)+3 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2022008)the Natural Science Foundation of Fujian Province of China(2022J01044)the XMU Training Program of Innovation and Entrepreneurship for Undergraduates(202410384030,S_(2)02310384242)Supporting Project Number(RSP2025R304),King Saud University,Riyadh,Saudi Arabia。
文摘Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR owing to their elevated hydrogen evolution reaction(HER)overpotential and eco-friendly characteristics.We have synthesized In2O_(3)nanofibers rich in oxygen vacancies using the electrospinning technique.The resultant 500-In_(2)O_(3)exhibited superior performance in converting CO_(2)RR to HCOOH,achieving an impressive formate Faradaic efficiency(FE)of 92.1% at a current density of-600 mA cm^(-2).Moreover,it demonstrated remarkable stability,maintaining its performance over 100 h at a current density of-300 mA cm^(-2)under a neutral electrolyte.Density functio nal theory(DFT)calculations,in conjunction with spectroscopic characterizations,have revealed that a Cl-modified In catalyst exhibits a lowered energy barrier for the formation of*HCOOH,while simultaneously inhibiting the generation of*H,in contrast to its pristine In counterpart.Ultimately,we successfully engineered a dual-electrode system capable of simultaneously producing formate at both the cathode and the anode.At a current density of-100 mA cm^(-2),our system achieves a reduction in energy consumption by 12.5% and a significant enhancement in electrical energy conversion efficiency by 39.9%.
文摘Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-doped cobalt molybdate(WDCMO)catalyst was synthesized for efficient and durable OER under neutral electrolyte.It is demonstrated that catalyst reconstruction is suppressed by W doping,which stabilizes the Co-O-Mo point-to-point connection in CoMoO_(4) architecture and stimulates to a lower valence state of active sites over the surface phase.Thereby,the surface structure maintains to avoid compound dissolution caused by over-oxidation during OER.Meanwhile,the WDCMO catalyst promotes charge transfer and optimizes*OH intermediate adsorption,which improves reaction kinetics and intrinsic activity.Consequently,the WDCMO electrode exhibits an overpotential of 302 mV at 10 mA cm^(-2) in neutral electrolyte with an improvement of 182 mV compared with CoMoO4 electrode.Furthermore,W doping significantly improves the electrode stability from 50 h to more than 320 h,with a suppressive potential attenuation from 2.82 to 0.29 mV h^(-1).This work will shed new light on designing rational electrocatalysts for neutral OER.
基金financially supported by the National Natural Science Foundation of China(Nos.52422314,U23A20687,and 52231008)the International Science&Technology Cooperation Program of Hainan Province(No.GHYF2023007).
文摘Oxygen reduction reaction(ORR)in neutral electrolyte is urgently needed in various areas,such as metalair batteries.However,the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates.In this work,we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N_(4)moieties.The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state.The optimized spin-electron filled state(t2g^(4)eg^(1))of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of^(∗)OH desorption.Consequently,Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C,showing a more positive half-wave potential of 0.753 V(vs.RHE)in 0.1 mol/L phosphate buffered saline.In addition,Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm^(−2)and long-term stability for 200 h.This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.
文摘Hybrid electrolyte lithium-air batteries(HELABs)face challenges such as the high cathode overpotential,cycling instability,and catalyst degradation,limiting their widespread use in practical applications.This study employs density functional theory(DFT)to analyze the oxygen reduction reaction(ORR)free energy profile,overpotential,and adsorption energy of two-dimensional Ti_(3)C_(2)T_(x) as a cathode catalyst.The optimal oxygen adsorption sites on Ti_(3)C_(2)T_(x) surfaces are identified,and the charge transfer,band structure,density of states,and bonding characteristics after oxygen adsorption are quantitatively analyzed.Results suggest that Ti_(3)C_(2)T_(x) exhibits low overpotentials when used as a HELAB cathode electrocatalyst,with oxygen preferentially adsorbing at the top and bridge sites of Ti_(3)C_(2) and Ti_(3)C_(2)F2,respectively.These findings offer valuable insights for the application of MXenes in HELABs.
基金supported by the National Natural Science Foundation of China(21403125,21403124)the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province(BS2011NJ009)~~
文摘Fe_2O_3 nanorods and hexagonal nanoplates were synthesized and used as the promoters for Pt electrocatalysts toward the methanol oxidation reaction(MOR) in an alkaline electrolyte.The catalysts were characterized by scanning electron microscopy,transmission electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,cyclic voltammetry and chronoamperometry.The results show that the presence of Fe_2O_3 in the electrocatalysts can promote the kinetic processes of MOR on Pt,and this promoting effect is related to the morphology of the Fe_2O_3 promoter.The catalyst with Fe_2O_3 nanorods as the promoter(Pt-Fe_2O_3/C-R) exhibits much higher catalytic activity and stability than that with Fe_2O_3 nanoplates as the promoter(Pt-Fe_2O_3/C-P).The mass activity and specific activity of Pt in a Pt-Fe_2O_3/C-R catalyst are 5.32 A/mgpt and 162.7 A/m^2_(Pt),respectively,which are approximately 1.67 and 2.04 times those of the Pt-Fe_2O_3/C-P catalyst,and 4.19 and 6.16 times those of a commercial PtRu/C catalyst,respectively.Synergistic effects between Fe_2O_3 and Pt and the high content of Pt oxides in the catalysts are responsible for the improvement.These findings contribute not only to our understanding of the MOR mechanism but also to the development of advanced electrocatalysts with high catalytic properties for direct methanol fuel cells.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant no.21503228)the Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA21090203)。
文摘Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.
基金supported by the Chinese National Natural Science Foundation (51402307)the Australian Research Council (ARC) Discovery Early Career Researcher Award (DE150101306)Linkage Project (LP160100927)
文摘Ammonia is a vital emerging energy carrier and storage medium in the future hydrogen economy, even presenting relevant advantages compared with methanol due to the higher hydrogen content(17.6 wt% for ammonia versus 12.5 wt% for methanol). The rapidly growing demand for ammonia is still dependent on the conventional high-temperature and high-pressure Haber–Bosch process, which can deliver a conversion rate of about 10%–15%. However, the overall process requires a large amount of fossil fuels,resulting in serious environmental problems. Alternatively, electrochemical routes show the potential to greatly reduce the energy consumption, including sustainable energy sources and simplify the reactor design. Electrolytes perform as indispensable reaction medium during electrochemical processes, which can be further classified into solid oxide electrolytes, molten salt electrolytes, polymer electrolytes, and liquid electrolytes. In this review, recent developments and advances of the electrocatalytic ammonia synthesis catalyzed by a series of functional materials on the basis of aforementioned electrolytes have been summarized and discussed, along with the presentation and evaluation of catalyst preparation, reaction parameters and equipment.
基金supported by the National Natural Science Foundation of China(21306119)the Key Research and Development Projects in Sichuan Province(2017GZ0397,2017CC0017)+1 种基金the Science and Technology Project of Chengdu(2015-HM01-00531-SF)the Outstanding Young Scientist Foundation of Sichuan University(2013SCU04A23)
文摘The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst.