Two different cDNA clones (Sscat1 and Sscat2) encoding catalase, the primary important H2O2-scavenging enzyme, were isolated from a AZap-cDNA library constructed from a 400 mmol/L NaCl-treated library of Suaeda salsa ...Two different cDNA clones (Sscat1 and Sscat2) encoding catalase, the primary important H2O2-scavenging enzyme, were isolated from a AZap-cDNA library constructed from a 400 mmol/L NaCl-treated library of Suaeda salsa ( L.) Pall aerial tissue. Sscat1 (1.7 kb) contains a full open reading frame of 492 amino acids and Sscat2 (1.1 kb) is a partial clone. BLAST analysis indicates that the two clones share 71.9% identity in nucleotide sequence and 75% identity in deduced amino acid sequence within the last 287 amino acid residues of Sscat1. Southern blotting analysis showed that Sscat1 is multicopy in S. salsa genome, while Sscat2 is a single copy gene. Northern blotting analysis showed a rapid increase in the steady-level of both genes in roots after 48 It salt treatment, but only Sscat1 was induced in salinity treated leaves. Time-course analysis carried out in leaves confirmed that Sscat1 was induced by salt stress, in contrast to Sscat2. These implied that the expression of Sscat1 and Sscat2 genes are differentially regulated in S. salsa. The activity of total catalase is dramatically increased in response to salt stress.展开更多
The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilita...The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.展开更多
[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Trit...[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.展开更多
Catalase(CAT)is a kind of tetrameric protein in the human body,play as a key regulator for controlling oxidative stress.The main function of CAT is to regulate the concentration of hydrogen peroxide(H2O2)by catalyzing...Catalase(CAT)is a kind of tetrameric protein in the human body,play as a key regulator for controlling oxidative stress.The main function of CAT is to regulate the concentration of hydrogen peroxide(H2O2)by catalyzing the decomposition of H2O2.At present,it is reported that CAT is also involved in regulating the oxidative stress in tumor cells,and its expression level is significantly related to the development of breast cancer(BC).In addition,CAT with different expression patterns,was related in the proliferation,invasion,treatment and prognosis of BC cells.Meanwhile,BC is a common and well-known cancer among women worldwide,and its incidence has been increasing in recent years.Therefore,in-depth study of CAT in the pathogenesis and progression of BC is of great significance for the future treatment and diagnosis.The present review summarized the effects of oxidative stress on cancer cells,and emphasized the key role of CAT in the development of BC,which provides a key clue for promoting research on BC and selecting therapeutic targets.展开更多
Background Irrigation has been a strategy used to reduce losses due to drought,which combined with a good supply of nitrogen(N),can improve the protective system of cotton plants.The objective of this study was to inv...Background Irrigation has been a strategy used to reduce losses due to drought,which combined with a good supply of nitrogen(N),can improve the protective system of cotton plants.The objective of this study was to investigate the effects of irrigated and rainfed cotton cultivation using different rates and sources of N.Cotton cultivation was carried out in Selvíria-MS field in the 2017/2018 harvest.The experiment was conducted in randomized blocks,which were designed in a 4×2×2 factorial scheme.The factors were composed of 0,40,80,and 150 kg·hm^(-2)level of N,using two sources of N under rainfed and irrigated systems.Results The provision of irrigation provided an increase in the levels of chlorophylls(Chl)a,Chl b,total Chl,carotenoids,pheophytin,leaf chlorophyll index(LCI),N content,nitrate(NO_(3)^(-)),sucrose(SUC),the number of vegetative and reproductive branches,boll mass,and seed cotton productivity.There was no effect of N sources on any of the characteristics evaluated.Application of 150 kg·hm^(-2)level of N increased in 11%,59%,22%,15%,15%and 17%in LCI,NO_(3)^(-),N,total amino acids(TA),SUC,and proline concentration in leaves,compared with 0 kg·hm^(-2)of N,respectively.Application of 150 kg·hm^(-2)level of N improved the leaf catalase activity(CAT)under the irrigation system;however,in a rainfed system,the highest CAT was observed at rates of 0 and 150 kg·hm^(-2)level of N.Irrigation increased in 55%,117%,68%,46%,8%,36%,24%,118%,48%,10%,11%and 72%in Chl a,Chl b,total Chl,CAR,LCI,pheophytins(Pheo),SUC,NO_(3)^(-),the number of vegetative branches,the number of reproductive branches,mass of 20 bolls and seed cotton yield compared with rainfed system,respectively,however,the antioxidant system and the ammonium content of plants was stimulated by rainfed cultivation.Conclusions Antioxidant responses increased during droughts in cotton farming,which may be connected to oxidative stress-related losses.Better N metabolism,photosynthetic pigments,and manufacturing components were all made possible by irrigated cultivation.The delivery of 150 kg·hm^(-2)of N in topdressing in cotton agriculture promoted the N metabolism,sucrose,total amino acids,and the plant's defense mechanism against oxidative stress.展开更多
Blocking the development of edible mushrooms will affect the production cycle and yield of fruiting bodies.Phenylalanine ammonia lyase(PAL,EC 4.3.1.24.)is an enzyme that catalyzes the deamination of phenylalanine to f...Blocking the development of edible mushrooms will affect the production cycle and yield of fruiting bodies.Phenylalanine ammonia lyase(PAL,EC 4.3.1.24.)is an enzyme that catalyzes the deamination of phenylalanine to form trans-cinnamic acid.Previous studies have shown that a decrease in pal1 gene transcription delays fruiting body development in Pleurotus ostreatus.Herein,we used wild type(WT)and RNA interference(RNAi)strains to study the molecular regulation of pal1 by RNA sequencing and Agrobacterium-mediated genetic transformation.Our results showed that interference with the pal1 gene resulted in reductions in the total PAL enzyme activity and the total phenol content,as well as an increase in the intracellular H_(2)O_(2)content.RNA-Seq data demonstrated that the significantly enriched KEGG terms were mainly related to the peroxisome pathway,MAPK signaling pathway-yeast and three other pathways,and the catalase(CAT)gene cat1 is also involved in multiple pathways that were enriched above.Exogenous H_(2)O_(2)significantly enhanced the transcription of the cat1 gene and elevated total CAT enzymatic activity.Moreover,the levels of cat1 gene transcription and the total CAT enzymatic activity in the RNAi-pal1 strains gradually become closer to those in the WT strain through the removal of H_(2)O_(2),which indicated that pal1 regulated the expression of cat1 by affecting the intracellular H_(2)O_(2)content.Finally,the overexpression of the cat1 gene in P.ostreatus caused growth retardation,especially during the process of primordia formation.In conclusion,this study demonstrated that PAL1 affects cat1 gene expression through the signaling molecule H_(2)O_(2)and regulates the development of P.ostreatus.The findings of this study enhance our understanding of the molecular developmental mechanism of edible mushrooms.展开更多
[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedl...[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.展开更多
[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametoci...[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametocides.[Method] The activity of peroxidase,catalase and the content of hydrogen peroxide,malondialdehyde in leaves and flower buds of Brassica napus cultivars Qinyou No.3 and L89 induced by the chemical gametocide EXP in the course of male sterility were studied.[Result] Protective enzyme activity and the content of hydrogen peroxide,malondialdehyde in rapeseed treated with EXP changed significantly,which indicated that active oxygen metabolism was abnormal.Furthermore,there was a significant difference in the reaction degree of different cultivars and organs treated by EXP.[Conclusion] There was a correlation between the disturbance of active oxygen metabolism and the male sterility induced by chemical gametocide EXP.展开更多
[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua ...[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice展开更多
[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Met...[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Method]By setting eleven Cd concentrations from 0.21 to 500 mg/kg in soil and the pot test, ecological corresponding mechanism of plant height, chlorophyll (Chl) content, catalase (CAT) activity and malondialdehyde (MDA) of Allium sativum L. was analyzed. [Result] The plant height had a strong tolerance to cadmium pollution in soil, while the total chlorophyll content and chlorophyll a content had no significant difference compared with control treatment, except Cd concentration was 500 mg/kg. The high Cd concentration would increase the damage to membrane of Allium sativum L. however with the regulation of physiological mechanism, the damage was gradually decreased.[Conclusion] Allium sativum L. had strong eco-physiological adaptability to Cd contaminated soil and it had potential for recovering Cd contaminated soil.展开更多
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem...A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.展开更多
The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the acti...The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the activities of superoxide dismutase (SOD) and GSH-peroxidase in the liver cytosol of mice, but showed no significant effect on the activity of catalase, and one of its major constituents, 4-methoxy-1-methyl-2-quinolone (MMQ) increased the activity of SOD in liver tissue of mice intoxicated with FeCl2-ascorbic acid (AA)-ADP in vivo. Various constituents isolated from the root of title plant inhibited the lipid peroxidation in rat liver homogenate, which was in vitro induced by FeCl2-ascorbic acid, CCl4-NADPH, or ADP- NADPH. Of the test compounds, MMQ and its derivatives integriquinolone were similar to (-tocopherol in inhibiting MDA production in rat liver microsomes induced by Fe2+-ascorbate, CCl4-NADPH, or ADP-NADPH.展开更多
\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It wa...\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It was found that breviscapine improved the activities of superoxide dismutase (SOD), GSHperoxidase and catalase, while decreasing the malondialdehyde (MDA) content in the brain, which was benificial in reducing the damage from cerebral ischemiareperfusion.展开更多
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 y...Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.展开更多
Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate th...Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate the protective effect of ascorbic acid.Methods:The testicular△^(5),3β-hydroxysteroid dehydrogenase(HSD),17β-HSD,peroxidase and catalase activities along with the levels of malondialdehyde(MDA)and conjugated dienes in testicular tissue were measured for the evaluation of testicular oxidative stress.The plasma testosterone(T)level was measured by immunoassay.Various germ cells at stageⅦof spermatogenic cycle were quantified from testicular stained sections.Results:Cyclophosphamide treatment results in a significant inhibition in the testicular△^(5),3β-HSD and 17β-HSD activities,a decrease in plasma T level and a diminution in the counts of various germ cells.Moreover,this treatment was also associated with a significant inhibition of the peroxidase and catalase activities along with high levels of MDA and conjugated dienes in the testis.All these changes were reversed by ascorbic acid co-administration.Conclusion:Cyclophosphamide treatment at the dosage used caused testicular gametogenic and androgenic disorders as well as induced testicular oxidative stress that can be reversed by ascorbic acid co-administration.展开更多
The impact of chromium(Ⅲ) and (Ⅵ) forms on soil catalase activity was presented. The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment. The soil samples were ame...The impact of chromium(Ⅲ) and (Ⅵ) forms on soil catalase activity was presented. The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment. The soil samples were amended with solution of Cr(Ⅲ) using CrCl3, and with Cr(Ⅵ) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control. Catalase activity was assayed by one of the commonly used spectrophotometric methods. As it was demonstrated in the experiment, both Cr(Ⅲ) and Cr(Ⅵ) have an ability to reduce soil catalase activity. A chromium dosage of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(Ⅲ) and 68% to 76% for Cr(Ⅵ), with relation to the control. Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.展开更多
文摘Two different cDNA clones (Sscat1 and Sscat2) encoding catalase, the primary important H2O2-scavenging enzyme, were isolated from a AZap-cDNA library constructed from a 400 mmol/L NaCl-treated library of Suaeda salsa ( L.) Pall aerial tissue. Sscat1 (1.7 kb) contains a full open reading frame of 492 amino acids and Sscat2 (1.1 kb) is a partial clone. BLAST analysis indicates that the two clones share 71.9% identity in nucleotide sequence and 75% identity in deduced amino acid sequence within the last 287 amino acid residues of Sscat1. Southern blotting analysis showed that Sscat1 is multicopy in S. salsa genome, while Sscat2 is a single copy gene. Northern blotting analysis showed a rapid increase in the steady-level of both genes in roots after 48 It salt treatment, but only Sscat1 was induced in salinity treated leaves. Time-course analysis carried out in leaves confirmed that Sscat1 was induced by salt stress, in contrast to Sscat2. These implied that the expression of Sscat1 and Sscat2 genes are differentially regulated in S. salsa. The activity of total catalase is dramatically increased in response to salt stress.
基金supported by grants to Y.Wu and L.Z.from the Shaanxi Key Research and Development Program(No.2022KWZ-11)the Ministry of Science and Technology Plans to Introduce High-End Foreign Experts(G2022172015L)the National Natural Science Foundation of China(Nos.32372501 and 31701761).
文摘The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.
基金Supported by the National Natural Science Foundation of China(21067003,51364015)the National High-Tech Research and Development Program of China(2012BAC11B07)the Jiangxi Natural Science Foundation(20114BAB203024)~~
文摘[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.
基金Supported by National Natural Science Foundation of China,No.82273457Natural Science Foundation of Guangdong Province,No.2023A1515012762Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Catalase(CAT)is a kind of tetrameric protein in the human body,play as a key regulator for controlling oxidative stress.The main function of CAT is to regulate the concentration of hydrogen peroxide(H2O2)by catalyzing the decomposition of H2O2.At present,it is reported that CAT is also involved in regulating the oxidative stress in tumor cells,and its expression level is significantly related to the development of breast cancer(BC).In addition,CAT with different expression patterns,was related in the proliferation,invasion,treatment and prognosis of BC cells.Meanwhile,BC is a common and well-known cancer among women worldwide,and its incidence has been increasing in recent years.Therefore,in-depth study of CAT in the pathogenesis and progression of BC is of great significance for the future treatment and diagnosis.The present review summarized the effects of oxidative stress on cancer cells,and emphasized the key role of CAT in the development of BC,which provides a key clue for promoting research on BC and selecting therapeutic targets.
基金partly funded by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brazil(CAPES)–Finance Code 001。
文摘Background Irrigation has been a strategy used to reduce losses due to drought,which combined with a good supply of nitrogen(N),can improve the protective system of cotton plants.The objective of this study was to investigate the effects of irrigated and rainfed cotton cultivation using different rates and sources of N.Cotton cultivation was carried out in Selvíria-MS field in the 2017/2018 harvest.The experiment was conducted in randomized blocks,which were designed in a 4×2×2 factorial scheme.The factors were composed of 0,40,80,and 150 kg·hm^(-2)level of N,using two sources of N under rainfed and irrigated systems.Results The provision of irrigation provided an increase in the levels of chlorophylls(Chl)a,Chl b,total Chl,carotenoids,pheophytin,leaf chlorophyll index(LCI),N content,nitrate(NO_(3)^(-)),sucrose(SUC),the number of vegetative and reproductive branches,boll mass,and seed cotton productivity.There was no effect of N sources on any of the characteristics evaluated.Application of 150 kg·hm^(-2)level of N increased in 11%,59%,22%,15%,15%and 17%in LCI,NO_(3)^(-),N,total amino acids(TA),SUC,and proline concentration in leaves,compared with 0 kg·hm^(-2)of N,respectively.Application of 150 kg·hm^(-2)level of N improved the leaf catalase activity(CAT)under the irrigation system;however,in a rainfed system,the highest CAT was observed at rates of 0 and 150 kg·hm^(-2)level of N.Irrigation increased in 55%,117%,68%,46%,8%,36%,24%,118%,48%,10%,11%and 72%in Chl a,Chl b,total Chl,CAR,LCI,pheophytins(Pheo),SUC,NO_(3)^(-),the number of vegetative branches,the number of reproductive branches,mass of 20 bolls and seed cotton yield compared with rainfed system,respectively,however,the antioxidant system and the ammonium content of plants was stimulated by rainfed cultivation.Conclusions Antioxidant responses increased during droughts in cotton farming,which may be connected to oxidative stress-related losses.Better N metabolism,photosynthetic pigments,and manufacturing components were all made possible by irrigated cultivation.The delivery of 150 kg·hm^(-2)of N in topdressing in cotton agriculture promoted the N metabolism,sucrose,total amino acids,and the plant's defense mechanism against oxidative stress.
基金supported by the National Key R&D Program of China(2022YFD1200600)the National Natural Science Foundation of China(32002110)the earmarked fund for China Agriculture Research System(CARS-20)。
文摘Blocking the development of edible mushrooms will affect the production cycle and yield of fruiting bodies.Phenylalanine ammonia lyase(PAL,EC 4.3.1.24.)is an enzyme that catalyzes the deamination of phenylalanine to form trans-cinnamic acid.Previous studies have shown that a decrease in pal1 gene transcription delays fruiting body development in Pleurotus ostreatus.Herein,we used wild type(WT)and RNA interference(RNAi)strains to study the molecular regulation of pal1 by RNA sequencing and Agrobacterium-mediated genetic transformation.Our results showed that interference with the pal1 gene resulted in reductions in the total PAL enzyme activity and the total phenol content,as well as an increase in the intracellular H_(2)O_(2)content.RNA-Seq data demonstrated that the significantly enriched KEGG terms were mainly related to the peroxisome pathway,MAPK signaling pathway-yeast and three other pathways,and the catalase(CAT)gene cat1 is also involved in multiple pathways that were enriched above.Exogenous H_(2)O_(2)significantly enhanced the transcription of the cat1 gene and elevated total CAT enzymatic activity.Moreover,the levels of cat1 gene transcription and the total CAT enzymatic activity in the RNAi-pal1 strains gradually become closer to those in the WT strain through the removal of H_(2)O_(2),which indicated that pal1 regulated the expression of cat1 by affecting the intracellular H_(2)O_(2)content.Finally,the overexpression of the cat1 gene in P.ostreatus caused growth retardation,especially during the process of primordia formation.In conclusion,this study demonstrated that PAL1 affects cat1 gene expression through the signaling molecule H_(2)O_(2)and regulates the development of P.ostreatus.The findings of this study enhance our understanding of the molecular developmental mechanism of edible mushrooms.
文摘[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.
基金Supported by the Special Research Fund of "National life Science&Technology Training Base" of Northwest A&F University[2006-(1)-061]~~
文摘[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametocides.[Method] The activity of peroxidase,catalase and the content of hydrogen peroxide,malondialdehyde in leaves and flower buds of Brassica napus cultivars Qinyou No.3 and L89 induced by the chemical gametocide EXP in the course of male sterility were studied.[Result] Protective enzyme activity and the content of hydrogen peroxide,malondialdehyde in rapeseed treated with EXP changed significantly,which indicated that active oxygen metabolism was abnormal.Furthermore,there was a significant difference in the reaction degree of different cultivars and organs treated by EXP.[Conclusion] There was a correlation between the disturbance of active oxygen metabolism and the male sterility induced by chemical gametocide EXP.
基金Supported by National Natural Science Foundation of China(30671126)~~
文摘[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice
基金Supported by the National Natural Science Foundation of China(40601062)~~
文摘[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Method]By setting eleven Cd concentrations from 0.21 to 500 mg/kg in soil and the pot test, ecological corresponding mechanism of plant height, chlorophyll (Chl) content, catalase (CAT) activity and malondialdehyde (MDA) of Allium sativum L. was analyzed. [Result] The plant height had a strong tolerance to cadmium pollution in soil, while the total chlorophyll content and chlorophyll a content had no significant difference compared with control treatment, except Cd concentration was 500 mg/kg. The high Cd concentration would increase the damage to membrane of Allium sativum L. however with the regulation of physiological mechanism, the damage was gradually decreased.[Conclusion] Allium sativum L. had strong eco-physiological adaptability to Cd contaminated soil and it had potential for recovering Cd contaminated soil.
基金This research was supported by National Basic Research Program of China (No.2002CB412502)Project of Key Pro-gram of the National Science Foundation of China (No.90411020)Natural Science Foundation of China (No.30400051)
文摘A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.
文摘The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the activities of superoxide dismutase (SOD) and GSH-peroxidase in the liver cytosol of mice, but showed no significant effect on the activity of catalase, and one of its major constituents, 4-methoxy-1-methyl-2-quinolone (MMQ) increased the activity of SOD in liver tissue of mice intoxicated with FeCl2-ascorbic acid (AA)-ADP in vivo. Various constituents isolated from the root of title plant inhibited the lipid peroxidation in rat liver homogenate, which was in vitro induced by FeCl2-ascorbic acid, CCl4-NADPH, or ADP- NADPH. Of the test compounds, MMQ and its derivatives integriquinolone were similar to (-tocopherol in inhibiting MDA production in rat liver microsomes induced by Fe2+-ascorbate, CCl4-NADPH, or ADP-NADPH.
文摘\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It was found that breviscapine improved the activities of superoxide dismutase (SOD), GSHperoxidase and catalase, while decreasing the malondialdehyde (MDA) content in the brain, which was benificial in reducing the damage from cerebral ischemiareperfusion.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-339 and KSCX1-07) the Ministry of Science and Technology of China (No. 2001CCB00600).
文摘Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.
基金The authors gratefully acknowledge the financial assistance from the Major Research Project(Project No.F-3/50/99 dated 3l-3-99)provided by the University Grants Commission(UGC),New Delhi,India
文摘Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate the protective effect of ascorbic acid.Methods:The testicular△^(5),3β-hydroxysteroid dehydrogenase(HSD),17β-HSD,peroxidase and catalase activities along with the levels of malondialdehyde(MDA)and conjugated dienes in testicular tissue were measured for the evaluation of testicular oxidative stress.The plasma testosterone(T)level was measured by immunoassay.Various germ cells at stageⅦof spermatogenic cycle were quantified from testicular stained sections.Results:Cyclophosphamide treatment results in a significant inhibition in the testicular△^(5),3β-HSD and 17β-HSD activities,a decrease in plasma T level and a diminution in the counts of various germ cells.Moreover,this treatment was also associated with a significant inhibition of the peroxidase and catalase activities along with high levels of MDA and conjugated dienes in the testis.All these changes were reversed by ascorbic acid co-administration.Conclusion:Cyclophosphamide treatment at the dosage used caused testicular gametogenic and androgenic disorders as well as induced testicular oxidative stress that can be reversed by ascorbic acid co-administration.
文摘The impact of chromium(Ⅲ) and (Ⅵ) forms on soil catalase activity was presented. The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment. The soil samples were amended with solution of Cr(Ⅲ) using CrCl3, and with Cr(Ⅵ) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control. Catalase activity was assayed by one of the commonly used spectrophotometric methods. As it was demonstrated in the experiment, both Cr(Ⅲ) and Cr(Ⅵ) have an ability to reduce soil catalase activity. A chromium dosage of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(Ⅲ) and 68% to 76% for Cr(Ⅵ), with relation to the control. Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.