期刊文献+
共找到246,841篇文章
< 1 2 250 >
每页显示 20 50 100
Integration of Problem-Based Learning and Case-Based Learning in Chinese Endodontics Standard Resident Training
1
作者 Lin Yang Lei Dou +2 位作者 Wanlu Lu Jie Xu Yi Shu 《Journal of Contemporary Educational Research》 2025年第10期329-334,共6页
As the most critical part of post-graduate education,the Chinese government launched Standard Resident Training in 2013 to solve the regional inequality of medical quality and meet the increasing social requirement fo... As the most critical part of post-graduate education,the Chinese government launched Standard Resident Training in 2013 to solve the regional inequality of medical quality and meet the increasing social requirement for better medical service.We integrated problem-based learning(PBL)and case-based learning(CBL)in the Endodontics Standard Resident Training.By evaluating with objective parameters including theoretical knowledge and clinical practice skill,and subjective parameters including questionnaire,it was found that PBL+CBL played a positive role in endodontic resident training with a significant difference(P<0.05).This combined training model is instructive for China’s resident training,and this result can provide a rudimentary reference to current postgraduate teaching reform. 展开更多
关键词 Problem-based learning case-based learning Postgraduate education Standard Resident Training ENDODONTICS
在线阅读 下载PDF
Case-based learning in education of Traditional Chinese Medicine: a systematic review 被引量:32
2
作者 Ji Chen Ying Li +3 位作者 Yong Tang Fang Zeng Xi Wu Fanrong Liang 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2013年第5期692-697,共6页
OBJECTIVE:To assess the effect of case-based learning(CBL)in the education of Traditional Chinese Medicine(TCM).METHODS:The studies concerning TCM courses designed with CBL were included by searching the databases of ... OBJECTIVE:To assess the effect of case-based learning(CBL)in the education of Traditional Chinese Medicine(TCM).METHODS:The studies concerning TCM courses designed with CBL were included by searching the databases of EBSCO,Pubmed,Science Citation Index,China National Knowledge Infrastructure,Chongqing VIP database.The valid data was extracted in accordance with the included criteria.The quality of the studies was assessed with Gemma Flores-Masteo.RESULTS:A total of 22 articles were retrieved that met the selection criteria:one was of high quality;two were of low quality;the rest were categorized as moderate quality.The majority of the studiesdemonstrated the better effect produced by CBL,while a few studies showed no difference,compared with the didactic format.All included studies confirmed the favorable effect on learners'attitude,skills and ability.CONCLUSION:CBL showed the desirable results in achieving the goal of learning.Compared to didactic approach,it played a more active role in promoting students'competency.Since the quality of the articles on which the study was based was not so high,the findings still need further research to become substantiated. 展开更多
关键词 Medicine Chinese traditional Complementary therapies case-based learning Teaching format Systematic review
原文传递
Integration of Theory and Practice in Medical Morphology Curriculum in Postgraduate Training:A Flipped Classroom and Case-based Learning Exercise 被引量:2
3
作者 Xi-min HU Zhi-xin LI +5 位作者 Jing DENG Yang HAN Shuang LU Qi ZHANG Zi-qiang LUO Kun XIONG 《Current Medical Science》 SCIE CAS 2023年第4期741-748,共8页
Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the dec... Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the deciding factors that drive students'perceived advantages in class to improve precision education and the teaching model.Methods:A mixed strategy of an existing flipped classroom(FC)and a case-based learning(CBL)model was conducted in a medical morphology curriculum for 575 postgraduate students.The subjective learning evaluation of the individuals(learning time,engagement,study interest and concentration,and professional integration)was collected and analyzed after FC-CBL model learning.Results:The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model.Students felt more engaged by instructors in person and benefited in terms of time-saving,flexible arrangements,and professional improvement.Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories:1)advancing a guideline of precision teaching according to individual characteristics;2)revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course;3)understanding the perceived advantages and their interfaces;and 4)barriers and/or improvement to implement the FC-CBL model in the Research Design class,such as a richer description of e-learning and hands-on practice.Conclusion:Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training. 展开更多
关键词 flipped classroom case-based learning medical morphology curriculum research design POSTGRADUATE
暂未订购
Research and Discussion on Flipped Classroom Combined with Case-Based Learning in Pharmacoeconomics Teaching
4
作者 Xingwen Zhou Zilong Dang +4 位作者 Xingdong Wang Chen Chen Zhi Rao Ting Wei Yanping Wang 《Journal of Contemporary Educational Research》 2024年第4期120-125,共6页
Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selecte... Objective:To explore the application effect of flipped classroom combined with case-based learning teaching methods in pharmacoeconomics teaching.Methods:The students majoring in clinical pharmacy in 2019 were selected as the study subjects,and the cost-effectiveness analysis of different dosage forms of Yinzhihuang in the treatment of neonatal jaundice was selected as the teaching case.The flipped classroom combined with case-based learning teaching method was used to carry out theoretical teaching to the students.After the course,questionnaires were distributed through the Sojump platform to evaluate the teaching effect.Results:The results of the questionnaire showed that 85.71%of the students believed that the flipped classroom combined with case-based learning teaching method was helpful in mobilizing the learning enthusiasm and initiative,and improving the comprehensive application ability of the knowledge of pharmacoeconomics.92.86%of the students think that it is conducive to the understanding and memorization of learning content,as well as the cultivation of teamwork,communication,etc.Conclusion:Flipped classroom combined with case-based learning teaching method can improve students’knowledge mastery,thinking skills,and practical application skills,as well as optimize and improve teachers’teaching levels. 展开更多
关键词 Flipped classroom case-based learning teaching method PHARMACOECONOMICS Teaching methods
在线阅读 下载PDF
Advances and Prospects of Case-Based Learning in Clinical Dermatovenereology Education
5
作者 Yu ZHANG 《Integration of Industry and Education Journal》 2025年第2期86-91,共6页
Dermatovenereology,as a cornerstone discipline in clinical medical education,is characterized by its extensive morphological diversity,complex pathophysiology,and high clinical specificity.However,traditional lecture-... Dermatovenereology,as a cornerstone discipline in clinical medical education,is characterized by its extensive morphological diversity,complex pathophysiology,and high clinical specificity.However,traditional lecture-based pedagogical approaches are often insufficient to address the discipline’s dynamically evolving knowledge base,heterogeneous disease presentations,and the demand for multidimensional clinical reasoning.In response to these challenges,Case-Based Learning(CBL)has emerged as a pivotal educational reform strategy.By leveraging authentic clinical case narratives,CBL effectively activates learners’intrinsic motivation,fosters higher-order clinical reasoning,and enhances collaborative problem-solving capabilities.This review synthesizes current evidence regarding the theoretical foundations,practical implementation strategies,and educational outcomes associated with CBL within dermatovenereology curricula.Grounded in modern educational theories,including Bloom’s taxonomy and situated cognition,CBL employs carefully designed clinical scenarios with structured problem-chain frameworks to integrate three core competency domains:case deconstruction,differential diagnosis,and therapeutic decision-making.Essential instructional components encompass structured controversial case discussions,multidisciplinary team(MDT)-based simulations,and clinical-translational reasoning mechanisms.Accumulated evidence indicates that CBL significantly improves learners’proficiencies in lesion interpretation,diagnostic efficiency,evidence-based decision-making,teamwork,and enhancing professional identity formation.Nevertheless,sustainable integration of CBL faces challenges related to pedagogical systematization,faculty development,learner adaptation,and technological support.Future efforts should focus on building a resilient dermatology talent cultivation system through optimized instructional design,intelligent tutoring systems,and competency-oriented assessments. 展开更多
关键词 Dermatovenereology case-based learning(CBL) Clinical reasoning Medical education
在线阅读 下载PDF
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
6
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 UAV FANET smart cities reinforcement learning Q-learning
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
7
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
8
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning
9
作者 Huaxiong Liao Xiangxuan Zhong +4 位作者 Xueqi Chen Yirui Huang Yuwei Lin Jing Zhang Bruce Gu 《Computers, Materials & Continua》 2026年第1期1530-1550,共21页
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re... The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence. 展开更多
关键词 PRIVACY-PRESERVING trajectory generation differential privacy imitation learning Markov chain
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
10
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation
11
作者 Xiaoyu Wen Haohao Liu +6 位作者 Xinyu Zhang Haoqi Wang Yuyan Zhang Guoyong Ye Hongwen Xing Siren Liu Hao Li 《Computers, Materials & Continua》 2026年第1期1503-1529,共27页
Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in oper... Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines. 展开更多
关键词 Aircraft pulsating assembly lines skilled operator reinforcement learning PSO reverse scheduling
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
12
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey
13
作者 Binglei Yue Aili Jiang +3 位作者 Chun Yang Junwei Lei Heng Liu Yin Zhang 《Computers, Materials & Continua》 2026年第1期1-28,共28页
With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State I... With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State Information(CSI)offers fine-grained temporal,frequency,and spatial insights into multipath propagation,making it a crucial data source for human-centric sensing.Recently,the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments.This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI.We first outline mainstream CSI acquisition tools and their hardware specifications,then provide a detailed discussion of preprocessing methods such as denoising,time–frequency transformation,data segmentation,and augmentation.Subsequently,we categorize deep learning approaches according to sensing tasks—namely detection,localization,and recognition—and highlight representative models across application scenarios.Finally,we examine key challenges including domain generalization,multi-user interference,and limited data availability,and we propose future research directions involving lightweight model deployment,multimodal data fusion,and semantic-level sensing. 展开更多
关键词 Channel State Information(CSI) human sensing human activity recognition deep learning
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
14
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
15
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
16
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
17
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence
18
作者 Muhammad Adil Nadeem Javaid +2 位作者 Imran Ahmed Abrar Ahmed Nabil Alrajeh 《Computers, Materials & Continua》 2026年第1期1944-1963,共20页
Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learni... Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction. 展开更多
关键词 Heart disease deep learning localized random affine shadowsampling local interpretable modelagnostic explanations shapley additive explanations 10-fold cross-validation
在线阅读 下载PDF
Deep Learning-Based Toolkit Inspection:Object Detection and Segmentation in Assembly Lines
19
作者 Arvind Mukundan Riya Karmakar +1 位作者 Devansh Gupta Hsiang-Chen Wang 《Computers, Materials & Continua》 2026年第1期1255-1277,共23页
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t... Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities. 展开更多
关键词 Tool detection image segmentation object detection assembly line automation Industry 4.0 Intel RealSense deep learning toolkit verification RGB-D imaging quality assurance
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
20
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS Internet of Things(IoT)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部