The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredi...The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredictable.”In this study,a blast furnace com-prehensive status score and prediction method based on a cascade system and a combined model were proposed to address this issue.A dual cascade evaluation system was developed by integrating subjective and objective weighting methods.The analytic hierarchy process,coefficient of variation,entropy weight method,and impart combinatorial games were jointly employed to determine the optimal weight distribution across indicators.Categorized statuses(raw material,gas flow,furnace body,furnace cylinder,and iron-slag)were evaluated.Based on the five categories of the status data,the second cascade was applied to upgrade the quantitative evaluation of the comprehens-ive status.The weights of the different categories were 0.22,0.15,0.22,0.21,and 0.20,respectively.According to the data analysis,the results of the comprehensive status score closely matched the on-site production logs.Based on the blast furnace smelting period,the maximal information coefficient method was applied to the 100 parameters that were most relevant to the comprehensive status.A com-bined prediction model for a comprehensive status score was designed using bidirectional long short-term memory(BiLSTM)and categorical boosting(CatBoost).The test results indicated that the combined model reduced the mean absolute error by an average of 0.275 and increased the hit rate by an average of 5.65 percentage points compared to BiLSTM or CatBoost alone.When the er-ror range was±2.5,the combined model predicted a hit rate of 91.66%for the next hour’s comprehensive status score,and its high accur-acy was deemed satisfactory for the field.SHapley Additive exPlanations(SHAP)and regression fitting were applied to analyze the lin-ear quantitative relationship between the key variables and the comprehensive status score.When the furnace bottom center temperature was increased by 10℃,the comprehensive status score increased by 0.44.This method contributes to a more precise management and control of the comprehensive status of the blast furnace on-site.展开更多
Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs...Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.展开更多
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d...A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.展开更多
Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and ra...Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and rapid performance simultaneously.Thus,multiple mutation detection processes are necessary,which results in long processing times and high costs.In this study,we developed a thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection(TTI-CS).This strategy is based on the DNA probe,which changes the thermodynamic balance of the DNA cascade by the designed bubble structure,thereby achieving a good distinction between mutant and wild-type DNA.The designed method greatly shortens the detection time through two-way intrusion.In addition,this method only changes two inexpensive trigger and bridge sequences,which replace the specific and expensive nucleic acid probes used in analyses based on traditional DNA probe methods,thereby enabling multiple detections.We performed the detection of synthetic single-stranded DNA for the five mutation points and successfully detected in endometrial cancer specimens.The detection limit of this method is0.1%,which better meets the needs of clinical low-abundance multiple mutation detection.Overall,TTI-CS is currently one of the best methods for detecting multiple mutation detections.展开更多
Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role ...Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role in purifying water within the system.This study attempted to investigate the water quality status and the farmers’willingness to rehabilitate the ecosystem components of the Thirappane TCS.Drinking and irrigation water quality parameters were tested in 34 locations and drinking and irrigation water quality indexes were calculated.Participatory rural appraisal and a questioner survey were conducted to gather social data.Water of TCS was observed to be appropriate for irrigation but not for drinking during the Maha cropping season.Based on the results of the Nitrate(as NO_(3)^(-))and Total Phosphate(as PO_(4)^(3-)),water of TCS can be categorized as eutrophic.Presence of ecosystem features of tank cascade system,annual income of the respondents,satisfaction on the quality of water for drinking,and the awareness about the tank cascade system significantly influenced the participatory decisions of the community on the rehabilitation of TCS.This study shall be an example and an eye opener to formulate sustainable tank cascade management plan.展开更多
In the present work, it is assumed that the n-components are arranged in the hierarchial order. The n-cascade system surviving with loss of m components by k number of attacks is studied;the general equation for the r...In the present work, it is assumed that the n-components are arranged in the hierarchial order. The n-cascade system surviving with loss of m components by k number of attacks is studied;the general equation for the reliability is obtained for the above said system;and the system reliability is computed numerically for 6-cascade system for 2-number of attacks.展开更多
Coal and gas outbursts constitute a critical hazard in underground mining operations,characterized by rapid transitions from localized instability to catastrophic failure.Understanding the relationship between initial...Coal and gas outbursts constitute a critical hazard in underground mining operations,characterized by rapid transitions from localized instability to catastrophic failure.Understanding the relationship between initial characteristics and final outburst scale remains a fundamental challenge in geomechanics.This study conceptualizes outbursts as deterministic cascade systems through integrated physical simulations combining high-sensitivity infrasound monitoring with energy analysis under controlled gas pressure(0.5–1.0 MPa)and confining stress(5–10 MPa)conditions.Our complementary analytical algorithms—the absolute amplitude integral and predominant period function—revealed characteristic step-wise patterns in outburst development.Quantitative analysis established a robust correlation(R2=0.91)between initial acoustic response and final outburst intensity.Energy analysis demonstrated that gas expansion dominates the outburst process(91.81%–99.09%of total energy),with desorption gas contributing 59.1%–77.7%.Time-frequency analysis showed systematic frequency migration from high(12–15 Hz)to low(4–8 Hz)bands during outburst progression,reflecting hierarchical spatial scale expansion.The concentrated energy release(>20%of total)within initial 0.2 s provides a mechanistic basis for the deterministic nature of outburst evolution.These mechanistic insights establish a quantitative framework for developing physics-based monitoring protocols and risk assessment methodologies applicable to underground coal mining operations.展开更多
The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding t...The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding the thermal conductivity of structures that rapidly change in a short time during collision cascade processes under irradiation.In this study,we employed the tight-binding(TB)method to investigate the electronic thermal conductivity(κ_(e))of tungsten-based systems during various cascading processes.We found thatκ_(e) values sharply decrease within the initial 0.3 picoseconds and then partially recover at a slow pace;this is closely linked to the evolution of defects and microstructural distortions.The increase in the initial kinetic energy of the primary knock-on atom and the presence of a high concentration of hydrogen atoms further decrease theκ_(e) values.Conversely,higher temperatures have a significant positive effect onκ_(e).Furthermore,the presence of a grain boundary∑5[001](130)substantially reducesκ_(e),whereas the absorption effect of point defects by the grain boundary has little influence onκ_(e) during cascades.Our findings provide a theoretical basis for evaluating changes in the thermal conductivity performance of PFMs during their usage in nuclear fusion reactors.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde...This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.展开更多
This paper is concerned with the boundary feedback stabilization of a coupled ODE- Schrodinger system cascades with the external disturbance flowing the control end. The author uses the sliding mode control (SMC) to...This paper is concerned with the boundary feedback stabilization of a coupled ODE- Schrodinger system cascades with the external disturbance flowing the control end. The author uses the sliding mode control (SMC) to deal with the disturbance. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of the solution for the closed-loop via SMC are proved, and the monotonicity of the "reaching condition" is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the dosed-loop system. Some numerical simulations is presented to illustrate the effectiveness of the proposed control.展开更多
Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of ...Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
Ejector refrigeration cycle(ERC)with advantages of simple structure and low cost holds great application potential in cascade/hybrid cycles to improve the overall system performance by removing or recovering the heat ...Ejector refrigeration cycle(ERC)with advantages of simple structure and low cost holds great application potential in cascade/hybrid cycles to improve the overall system performance by removing or recovering the heat from the main cycle.In this paper,a theoretical and experimental investigation of the ERC as a part of a cascade system was carried out.The operating parameters were optimized.The experimental ERC test rig was designed,developed and investigated at high evaporating temperatures and wide ranges of operating conditions.The influence of operating conditions on the efficiency of the ejector and ERC was analyzed.Experimental results and analysis in this study can be helpful for the application and operating condition optimization of ERC in cascade/hybrid refrigeration systems.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical...In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.展开更多
D-amino acids,different from the ubiquitous L-amino acids,are recognized as the“unnatural”amino acids.The applications of D-amino acids have drawn increasing interest from researchers in recent years,and D-amino aci...D-amino acids,different from the ubiquitous L-amino acids,are recognized as the“unnatural”amino acids.The applications of D-amino acids have drawn increasing interest from researchers in recent years,and D-amino acids are widely used in various industries,including for food products,pharmaceuticals,and agricultural chemicals.Inspired by the prevalent appli-cations,many synthetic methods for D-amino acids have been developed,which are mainly divided into chemical synthetic methods and biosynthetic methods.Chemical synthesis of D-amino acids has a variety of disadvantages such as multiple reaction steps,low yields,low reaction rates,and difficulties in product extraction.Thus,biosynthetic methods utilizing enzymes are attracting increasing attention because they are more energy-saving and environmentally friendly compared to traditional chemical synthesis.Among all enzymatic methods,multi-enzymatic cascade catalytic methods have significant advantages,such as lower costs,no need for intermediate separation,and higher catalytic efficiency,which is ascribed to the spatial proximity of biocatalysts.In this review,advances in multi-enzyme cascade catalytic systems as well as chemo-enzymatic approaches to synthesize D-amino acids are discussed.展开更多
An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov fu...An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.展开更多
基金supported by the Youth Program of National Natural Science Foundation of China(No.52404343)the General Program of National Natural Science Foundation of China(No.52274326)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.N2425031)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553)the Liaoning Province Science and Technology Plan Joint Program,China(Key Research and Development Program Project)(No.2023JH2/101800058).
文摘The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredictable.”In this study,a blast furnace com-prehensive status score and prediction method based on a cascade system and a combined model were proposed to address this issue.A dual cascade evaluation system was developed by integrating subjective and objective weighting methods.The analytic hierarchy process,coefficient of variation,entropy weight method,and impart combinatorial games were jointly employed to determine the optimal weight distribution across indicators.Categorized statuses(raw material,gas flow,furnace body,furnace cylinder,and iron-slag)were evaluated.Based on the five categories of the status data,the second cascade was applied to upgrade the quantitative evaluation of the comprehens-ive status.The weights of the different categories were 0.22,0.15,0.22,0.21,and 0.20,respectively.According to the data analysis,the results of the comprehensive status score closely matched the on-site production logs.Based on the blast furnace smelting period,the maximal information coefficient method was applied to the 100 parameters that were most relevant to the comprehensive status.A com-bined prediction model for a comprehensive status score was designed using bidirectional long short-term memory(BiLSTM)and categorical boosting(CatBoost).The test results indicated that the combined model reduced the mean absolute error by an average of 0.275 and increased the hit rate by an average of 5.65 percentage points compared to BiLSTM or CatBoost alone.When the er-ror range was±2.5,the combined model predicted a hit rate of 91.66%for the next hour’s comprehensive status score,and its high accur-acy was deemed satisfactory for the field.SHapley Additive exPlanations(SHAP)and regression fitting were applied to analyze the lin-ear quantitative relationship between the key variables and the comprehensive status score.When the furnace bottom center temperature was increased by 10℃,the comprehensive status score increased by 0.44.This method contributes to a more precise management and control of the comprehensive status of the blast furnace on-site.
文摘Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.
基金This work was supportedbytheNationalNaturalScienceFoundationofChina(No.60474051),theProgramforNewCenturyExcellentTalentsinUniversityofChina(NCET),andtheSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20020248028).
文摘A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.
基金supported by the Science and Technology Innovation Project of Hubei Province(No.2019ACA138)the National Natural Science Foundation of China(Nos.81871732 and 81974409)。
文摘Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and rapid performance simultaneously.Thus,multiple mutation detection processes are necessary,which results in long processing times and high costs.In this study,we developed a thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection(TTI-CS).This strategy is based on the DNA probe,which changes the thermodynamic balance of the DNA cascade by the designed bubble structure,thereby achieving a good distinction between mutant and wild-type DNA.The designed method greatly shortens the detection time through two-way intrusion.In addition,this method only changes two inexpensive trigger and bridge sequences,which replace the specific and expensive nucleic acid probes used in analyses based on traditional DNA probe methods,thereby enabling multiple detections.We performed the detection of synthetic single-stranded DNA for the five mutation points and successfully detected in endometrial cancer specimens.The detection limit of this method is0.1%,which better meets the needs of clinical low-abundance multiple mutation detection.Overall,TTI-CS is currently one of the best methods for detecting multiple mutation detections.
文摘Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role in purifying water within the system.This study attempted to investigate the water quality status and the farmers’willingness to rehabilitate the ecosystem components of the Thirappane TCS.Drinking and irrigation water quality parameters were tested in 34 locations and drinking and irrigation water quality indexes were calculated.Participatory rural appraisal and a questioner survey were conducted to gather social data.Water of TCS was observed to be appropriate for irrigation but not for drinking during the Maha cropping season.Based on the results of the Nitrate(as NO_(3)^(-))and Total Phosphate(as PO_(4)^(3-)),water of TCS can be categorized as eutrophic.Presence of ecosystem features of tank cascade system,annual income of the respondents,satisfaction on the quality of water for drinking,and the awareness about the tank cascade system significantly influenced the participatory decisions of the community on the rehabilitation of TCS.This study shall be an example and an eye opener to formulate sustainable tank cascade management plan.
文摘In the present work, it is assumed that the n-components are arranged in the hierarchial order. The n-cascade system surviving with loss of m components by k number of attacks is studied;the general equation for the reliability is obtained for the above said system;and the system reliability is computed numerically for 6-cascade system for 2-number of attacks.
基金funded by the National Natural Science Foundation of China(No.52464016)the Guizhou Provincial Foundation Research Project(No.QKHJC-[2024]Youth 141)+1 种基金the Guizhou Provincial Basic Research Program(No.MS[2025]632)the Young Researcher Growth Project of Guizhou Provincial Department of Education(No.QJJ-[2024]25).
文摘Coal and gas outbursts constitute a critical hazard in underground mining operations,characterized by rapid transitions from localized instability to catastrophic failure.Understanding the relationship between initial characteristics and final outburst scale remains a fundamental challenge in geomechanics.This study conceptualizes outbursts as deterministic cascade systems through integrated physical simulations combining high-sensitivity infrasound monitoring with energy analysis under controlled gas pressure(0.5–1.0 MPa)and confining stress(5–10 MPa)conditions.Our complementary analytical algorithms—the absolute amplitude integral and predominant period function—revealed characteristic step-wise patterns in outburst development.Quantitative analysis established a robust correlation(R2=0.91)between initial acoustic response and final outburst intensity.Energy analysis demonstrated that gas expansion dominates the outburst process(91.81%–99.09%of total energy),with desorption gas contributing 59.1%–77.7%.Time-frequency analysis showed systematic frequency migration from high(12–15 Hz)to low(4–8 Hz)bands during outburst progression,reflecting hierarchical spatial scale expansion.The concentrated energy release(>20%of total)within initial 0.2 s provides a mechanistic basis for the deterministic nature of outburst evolution.These mechanistic insights establish a quantitative framework for developing physics-based monitoring protocols and risk assessment methodologies applicable to underground coal mining operations.
基金supported by the Collaborative Innovation Program of Hefei Science Center of CAS(No.2022HSC-CIP007)。
文摘The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding the thermal conductivity of structures that rapidly change in a short time during collision cascade processes under irradiation.In this study,we employed the tight-binding(TB)method to investigate the electronic thermal conductivity(κ_(e))of tungsten-based systems during various cascading processes.We found thatκ_(e) values sharply decrease within the initial 0.3 picoseconds and then partially recover at a slow pace;this is closely linked to the evolution of defects and microstructural distortions.The increase in the initial kinetic energy of the primary knock-on atom and the presence of a high concentration of hydrogen atoms further decrease theκ_(e) values.Conversely,higher temperatures have a significant positive effect onκ_(e).Furthermore,the presence of a grain boundary∑5[001](130)substantially reducesκ_(e),whereas the absorption effect of point defects by the grain boundary has little influence onκ_(e) during cascades.Our findings provide a theoretical basis for evaluating changes in the thermal conductivity performance of PFMs during their usage in nuclear fusion reactors.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金National Natural Science Foundation of China(No.12071370)。
文摘This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.11626165the School Young Foundation of Taiyuan University of Technology under Grant No.2015QN062the Natural Science Foundation of Shanxi Province under Grant No.201701D221013
文摘This paper is concerned with the boundary feedback stabilization of a coupled ODE- Schrodinger system cascades with the external disturbance flowing the control end. The author uses the sliding mode control (SMC) to deal with the disturbance. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of the solution for the closed-loop via SMC are proved, and the monotonicity of the "reaching condition" is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the dosed-loop system. Some numerical simulations is presented to illustrate the effectiveness of the proposed control.
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
基金Supported by the China Postdoctoral Science Foundation(2014M552195)the State Key Laboratory Foundation of Subtropical Building,South China University of Technology(2013ZC13)the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology(2013A061401005)
文摘Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
基金financially supported by National Natural Science Foundation of China(NSFC)(Contract No.51906216,No.51706167)Zhejiang Province Natural Science Foundation of China(Contract No.LY16E060004)。
文摘Ejector refrigeration cycle(ERC)with advantages of simple structure and low cost holds great application potential in cascade/hybrid cycles to improve the overall system performance by removing or recovering the heat from the main cycle.In this paper,a theoretical and experimental investigation of the ERC as a part of a cascade system was carried out.The operating parameters were optimized.The experimental ERC test rig was designed,developed and investigated at high evaporating temperatures and wide ranges of operating conditions.The influence of operating conditions on the efficiency of the ejector and ERC was analyzed.Experimental results and analysis in this study can be helpful for the application and operating condition optimization of ERC in cascade/hybrid refrigeration systems.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
基金supported by National Key Research and Development Program of China(2018YFB0904100)Science and Technology Project of SGCC(SGHB0000KXJS1800685).
文摘In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.
基金Financial supports from the National Natural Science Foundation of China(NSFC)(No.31872891)the 111 Project(No.111-2-06)+2 种基金the High-End Foreign Experts Recruitment Program(No.G20190010083)the National Program for Support of Top-Notch Young Professionals,the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions,the Jiangsu Province“Collaborative Innovation Center for Advanced Industrial Fermentation”Industry Development Program,the Program for the Key Laboratory of Enzymes of Suqian(No.M201803)the National First-Class Discipline Program of Light Industry Technology and Engineering(No.LITE2018-09)are greatly appreciated.
文摘D-amino acids,different from the ubiquitous L-amino acids,are recognized as the“unnatural”amino acids.The applications of D-amino acids have drawn increasing interest from researchers in recent years,and D-amino acids are widely used in various industries,including for food products,pharmaceuticals,and agricultural chemicals.Inspired by the prevalent appli-cations,many synthetic methods for D-amino acids have been developed,which are mainly divided into chemical synthetic methods and biosynthetic methods.Chemical synthesis of D-amino acids has a variety of disadvantages such as multiple reaction steps,low yields,low reaction rates,and difficulties in product extraction.Thus,biosynthetic methods utilizing enzymes are attracting increasing attention because they are more energy-saving and environmentally friendly compared to traditional chemical synthesis.Among all enzymatic methods,multi-enzymatic cascade catalytic methods have significant advantages,such as lower costs,no need for intermediate separation,and higher catalytic efficiency,which is ascribed to the spatial proximity of biocatalysts.In this review,advances in multi-enzyme cascade catalytic systems as well as chemo-enzymatic approaches to synthesize D-amino acids are discussed.
文摘An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.