期刊文献+
共找到281,671篇文章
< 1 2 250 >
每页显示 20 50 100
A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference
1
作者 ZHU Xuefen LI Ang +2 位作者 LUO Yimei LIN Mengying TU Gangyi 《Journal of Systems Engineering and Electronics》 2025年第4期880-891,共12页
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers... Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance. 展开更多
关键词 solar radio burst(SRB) global positioning system(GPS) adaptive Kalman filter(AKF) tracking algorithm.
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
2
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Improved reduced-complexity bit and power allocation algorithms for multicarrier systems
3
作者 许威 赵春明 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期12-15,共4页
Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of... Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance. 展开更多
关键词 multicarrier modulation allocation algorithm bit loading computational complexity
在线阅读 下载PDF
地方保护机构介入下的历史街区保护——以美国Vieux Carré历史街区为例
4
作者 季宏 陈天华 王琼 《建筑与文化》 2025年第3期200-202,共3页
Vieux Carré委员会在Vieux Carré历史街区的保护中发挥了至关重要的作用。文章首先指出了美国历史街区保护制度完善之前地方保护机构发挥的作用。其次,以Vieux Carré委员会为研究对象,从Vieux Carré委员会延续街区... Vieux Carré委员会在Vieux Carré历史街区的保护中发挥了至关重要的作用。文章首先指出了美国历史街区保护制度完善之前地方保护机构发挥的作用。其次,以Vieux Carré委员会为研究对象,从Vieux Carré委员会延续街区风貌、制定保护更新指导手册和多方合作等方面进行剖析和研究,具体阐述了其保护更新的方法。最后总结Vieux Carré委员会的经验对其他国家和地区历史街区保护的启示。 展开更多
关键词 新奥尔良市 Vieux carré历史街区 Vieux carré委员会 保护更新
在线阅读 下载PDF
Weighted adaptive filtering algorithm for carrier tracking of deep space signal 被引量:8
5
作者 Song Qingping Liu Rongke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1236-1244,共9页
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut... Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect. 展开更多
关键词 Adaptive algorithms carrier tracking Deep space communicationKalman filters Tracking accuracy WEIGHTED
原文传递
A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck 被引量:8
6
作者 Fang Guo Wei Han +2 位作者 Xi-chao Su Yu-jie Liu Rong-wei Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期119-134,共16页
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov... The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions. 展开更多
关键词 carrier-based aircraft Weapon transportation support scheduling Pickup and delivery Bi-population immune algorithm
在线阅读 下载PDF
Genetic Algorithm Based QoS Aware Adaptive Subcarrier Allocation in Cognitive Radio Networks
7
作者 Dipak P. Patil Vishal A. Wankhede Vijay M. Wadhai 《Wireless Engineering and Technology》 2015年第4期87-97,共11页
In this paper, an adaptive subcarrier allocation scheme with reconfiguration of operating parameters for Cognitive Radio Networks (CRN) is presented. A QoS-conscious spectrum decision frame work is projected, where sp... In this paper, an adaptive subcarrier allocation scheme with reconfiguration of operating parameters for Cognitive Radio Networks (CRN) is presented. A QoS-conscious spectrum decision frame work is projected, where spectrum bands are determined by considering the application requirements as well as the dynamic nature of the spectrum bands. The novel subcarrier allocation algorithm is developed to fulfill different performance objective as a solution for subcarrier allocation and power allocation problem for Cognitive Radio (CR) users in CRNs. It employs operating frequency parameter modification using Proportional Resource Algorithm and Genetic Algorithm (GA). The multi objective optimization problem with equality and inequality constraint is considered. Moreover, a dynamic subcarrier allocations scheme is developed based on GA to decide on the spectrum bands adaptively dependent on the time-varying CR network capacity. The proposed algorithm targets to achieve maximum data rate for each subcarrier, maximize the overall network throughput and maximize the number of satisfied user under the constraints of bandwidth and guarantee Quality of Service (QoS) requirement from dynamic spectrum management (DSM) perspective. Moreover, it determines the best available channel. 展开更多
关键词 COGNITIVE RADIO GENETIC algorithm QoS SUBcarrIER ALLOCATION
在线阅读 下载PDF
DRAGON5/DONJON5程序在CARR燃耗计算中的应用与验证
8
作者 乔硕 乔雅馨 +1 位作者 冉怀昌 朱吉印 《核科学与工程》 北大核心 2025年第3期410-417,共8页
使用确定论程序DRAGON5/DONJON5计算了中国先进研究堆二维标准燃料组件和三维全堆芯的燃耗相关物理参数,并使用蒙特卡罗燃耗计算程序MVP-BURN和试验测量值对计算结果进行校核。经过两个换料周期,二维标准燃料组件的无限介质增殖系数(k_(... 使用确定论程序DRAGON5/DONJON5计算了中国先进研究堆二维标准燃料组件和三维全堆芯的燃耗相关物理参数,并使用蒙特卡罗燃耗计算程序MVP-BURN和试验测量值对计算结果进行校核。经过两个换料周期,二维标准燃料组件的无限介质增殖系数(k_(inf))最大相对偏差为-0.31%,对燃料内重要核素的计算偏差不超过3.85%,说明栅格输运计算程序DRAGON5具有较高的计算精度。对于三维全堆芯扩散计算,在两个换料周期内有效增殖系数(k_(eff))最大相对偏差为-0.63%,堆芯燃耗分布计算结果的最大偏差不超过5%。DONJON5和MVP-BURN对中国先进研究堆燃耗反应性系数的计算结果较为一致,与试验测量值的偏差约为-9%,证明了计算结果的合理性。 展开更多
关键词 DRAGON5 DONJON5 中国先进研究堆 燃耗计算
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Utility-optimization dynamic subcarrier allocation algorithm for SC-FDMA systems
10
作者 李一兵 Zhang Xu Ye Fang 《High Technology Letters》 EI CAS 2014年第1期1-8,共8页
Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission... Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission capacity requirements in wireless networks,which consider both the channel state information(CSI) and the capacity requirements of each user by setting appropriate utility functions.Simulation results show that with considerable lower computational complexity,the first utility-optimization algorithm can meet the system capacity requirements of each user effectively.However,the rate-sum capacity performance is poor.Furthermore,the second proposed utility-optimization algorithm can contribute a better trade-off between system rate-sum capacity requirement and the capacity requirements of each user by introducing the signal to noise ratio(SNR) information to the utility function based on the first utility-optimization algorithm,which can improve the user requirements processing capability as well as achieve a better sum-rate capacity. 展开更多
关键词 single carrier frequency division multiple access (SC-FDMA) dynamic subcarri-er allocation (DSA) utility function transmission capacity requirements utility-optimization algo-rithm greedy algorithm proportional fair algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
11
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
12
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
13
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
14
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
15
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
16
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
17
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部