The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P...The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.展开更多
Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable ...Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.展开更多
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ...In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.展开更多
基金Supported in Part by the Foundation of the Excellent State Key Laboratory under Grant 40523005,and the Ministry of Education of China
文摘The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.
文摘Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
文摘In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.