Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were...Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were analyzed using gas chromatography(GC),gas chromatography-mass spectrometry(GC–MS),and gas chromatography-isotope ratio mass spectrometry(GC-IRMS).Theδ^(13)C values of forty-three LHs were recognized and determined by comparing the GC and GC-IRMS methods.The results revealed significant differences inδ^(13)C distribution characteristics among different LH compounds.Theδ^(13)C variation of individual LHs in iso-paraffins showed the widest range,followed by cycloalkanes and aromatics,whereas theδ^(13)C variation in n-paraffins showed the narrowest range.Theδ^(13)C values of most individual LHs are primarily affected by the source facies and thermal evolution.Among them,c-1,3-dimethylcyclohexane(c-1,3DMCH)is mainly sourced from higher plants but may also form through abiotic mechanisms such as catalysis or cyclization.Theδ^(13)C values of c-1,3DMCH(δ^(13)Cc-1,3DMCH)primarily exhibit parental genetic characteristics,enabling effective distinction of oil from different source facies.Specifically,theδ^(13)Cc-1,3DMCH in marine oils,lacustrine oils,terrigenous oils,and coal-formed oils are<–22‰,from–22‰to−20.2‰,from−20.2‰to−18.4‰,and>−18.4‰,respectively.Moreover,maturity is the primary controlling factor forδ^(13)C values of 3MC7(δ^(13)C3MC7,3MC7:3-methylheptane),while the source facies serve as a secondary influence.The plot ofδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 was introduced to classify source facies.Asδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 increase,the source facies transits from marine to lacustrine,then terrigenous,and finally coal facies.Additionally,increasingδ^(13)C3MC7 indicates a relative increase in maturity.Therefore,theδ^(13)Cc-1,3DMCH vs.δ^(13)C3MC7 plot serves as an effective tool for distinguishing source facies and assessing relative maturity.展开更多
To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization a...To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture.展开更多
Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The ...Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.展开更多
The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that ...The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.展开更多
Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping...Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.展开更多
Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the cha...Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.展开更多
Designing efficient adsorbents for the deep removal of refractory dibenzothiophene(DBT)from fuel oil is vital for addressing environmental issues such as acid rain.Herein,zinc gluconate and urea-derived porous carbons...Designing efficient adsorbents for the deep removal of refractory dibenzothiophene(DBT)from fuel oil is vital for addressing environmental issues such as acid rain.Herein,zinc gluconate and urea-derived porous carbons SF-ZnNC-T(T represents the carbonization temperature)were synthesized without solvents.Through a temperature-controlled process of“melting the zinc gluconate and urea mixture,forming H-bonded polymers,and carbonizing the polymers,”the optimal carbon,SF-ZnNC-900,was obtained with a large surface area(2280 m^(2)g^(-1),highly dispersed Zn sites,and hierarchical pore structures.Consequently,SF-ZnNC-900 demonstrated significantly higher DBT adsorption capacity of43.2 mg S g^(-1),compared to just 4.3 mg S g^(-1)for the precursor.It also demonstrated good reusability,fast adsorption rate,and the ability for ultra-deep desulfurization.The superior DBT adsorption performance resulted from the evaporation of residual zinc species,which generated abundant mesopores that facilitated DBT transformation,as well as the formation of Zn-N_(x) sites that strengthened the host-vip interaction(ΔE=-1.466 e V).The solvent-free synthesized highly dispersed Zn-doped carbon shows great potential for producing sulfur-free fuel oil and for designing metal-loaded carbon adsorbents.展开更多
Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Effi...Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Efficient potassium activation is the key to develop high-performance oxygen-rich porous carbon cathodes.Herein,the alkali lignin,extracted from eucalyptus wood by geopolymer-assisted low-alkali pretreatment,is used to prepare oxygen-rich lignin-derived porous carbons(OLPCs)through KOH activation and K_(2)CO_(3)activation at 700-900℃.KOH activation constructs a hierarchical micro-mesoporous structure,while K_(2)CO_(3)activation constructs a microporous structure.Furthermore,K_(2)CO_(3)activation could more efficiently construct active oxygen(C=O)species than KOH activation.The OLPCs prepared by KOH/K_(2)CO_(3)activations at 800℃show the highest microporosity(78.4/87.7%)and C=O content(5.3/8.0 at.%).Due to that C=O and micropore adsorb zinc ions,the OLPCs prepared by K_(2)CO_(3)activation at 800℃with higher C=O content and microporosity deliver superior capacitive performance(256 F g^(-1)at 0.1 A g^(-1))than that by KOH activation at 800℃(224 F g^(-1)at 0.1 A g^(-1)),and excellent cycling stability.This work provides a new insight into the sustainable preparation of oxygenrich porous carbon cathodes through efficient potassium activation for ZIHCs.展开更多
Aqueous zinc-based energy storage devices(ZESDs)have garnered considerable interest because of their high specific capacity,abundant zinc reserves,excellent safety,and environmental friendliness.In recent years,variou...Aqueous zinc-based energy storage devices(ZESDs)have garnered considerable interest because of their high specific capacity,abundant zinc reserves,excellent safety,and environmental friendliness.In recent years,various types of boron,nitrogen co-doped carbon(BNC)materials have been developed to improve electrochemical performance of ZESDs.To promote the advancement of these technologies,we herein give a comprehensive review of the progress in BNC materials for ZESDs.The different synthetic methods employed in the preparation of BNC materials,including direct carbonization,template method,chemical vapor deposition,hydrothermal method,etc.,are summarized.These methods play a vital role in tailoring the structure,composition,and properties of BNC materials to optimize their performance in energy storage applications.Furthermore,some key achievements of BNC materials in zinc-air batteries and zinc-ion hybrid supercapacitors are elaborated.Lastly,future challenges and development directions of BNC materials in ZESDs are prospected.This comprehensive review could serve as a valuable resource in the energy storage field,providing insights into the potential of BNC materials in zinc-based energy storage technologies.展开更多
Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist...Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.展开更多
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare...Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.展开更多
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nan...Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.展开更多
K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most prom...K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most promising anode materials for KIBs,graphitic carbons,especially those with an intermediate structure between the crystalline graphite and amorphous carbons become a hot research focus because of the improved rate capability and enhanced diffusion-controlled capacity at low voltage regions.Herein,we first review the structures of graphitic carbons in the view of graphitic domains and the structure changes in their K-ion intercalation compounds.Then,we summarize the preparation mechanisms and characterizations of graphitic carbons and the influence factors in their degree of graphitization.Furtherly,we illustrate the strategies to optimize their K-ion storage properties from four aspects,namely graphitic domain design,microstructure engineering,electrochemical active component regulation,and defect engineering.Finally,we propose the issues that urgently need to be solved in graphitic carbons and the possible solutions.We hope that this view could offer some inspiration for the further designing and optimizing of graphitic carbons for practical KIBs.展开更多
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlor...The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.展开更多
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ...Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.展开更多
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare...Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.展开更多
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared...This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).展开更多
Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source ...Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.展开更多
Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized wit...Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42173054).
文摘Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were analyzed using gas chromatography(GC),gas chromatography-mass spectrometry(GC–MS),and gas chromatography-isotope ratio mass spectrometry(GC-IRMS).Theδ^(13)C values of forty-three LHs were recognized and determined by comparing the GC and GC-IRMS methods.The results revealed significant differences inδ^(13)C distribution characteristics among different LH compounds.Theδ^(13)C variation of individual LHs in iso-paraffins showed the widest range,followed by cycloalkanes and aromatics,whereas theδ^(13)C variation in n-paraffins showed the narrowest range.Theδ^(13)C values of most individual LHs are primarily affected by the source facies and thermal evolution.Among them,c-1,3-dimethylcyclohexane(c-1,3DMCH)is mainly sourced from higher plants but may also form through abiotic mechanisms such as catalysis or cyclization.Theδ^(13)C values of c-1,3DMCH(δ^(13)Cc-1,3DMCH)primarily exhibit parental genetic characteristics,enabling effective distinction of oil from different source facies.Specifically,theδ^(13)Cc-1,3DMCH in marine oils,lacustrine oils,terrigenous oils,and coal-formed oils are<–22‰,from–22‰to−20.2‰,from−20.2‰to−18.4‰,and>−18.4‰,respectively.Moreover,maturity is the primary controlling factor forδ^(13)C values of 3MC7(δ^(13)C3MC7,3MC7:3-methylheptane),while the source facies serve as a secondary influence.The plot ofδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 was introduced to classify source facies.Asδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 increase,the source facies transits from marine to lacustrine,then terrigenous,and finally coal facies.Additionally,increasingδ^(13)C3MC7 indicates a relative increase in maturity.Therefore,theδ^(13)Cc-1,3DMCH vs.δ^(13)C3MC7 plot serves as an effective tool for distinguishing source facies and assessing relative maturity.
基金supported by the National Key R&D Program(2022YFC3902403)Fundamental Research Funds for the Central Universities(2024JC001,2019JG002)Technology Innovation Special Fund of Jiangsu Province for Carbon Dioxide Emission Peaking and Carbon Neutrality(BE2022307)。
文摘To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture.
文摘Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.
文摘The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.
基金supported by the National Natural Science Foundation of China(22262010,22062005,22165005,U20A20128)Guangxi Science and Technology Fund for Distinguished HighTalent Introduction Program(AC22035091)Guangxi Science Fund for Distinguished Young Scholars(2019GXNSFFA245016)。
文摘Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.
基金supported by the Key Research and Development Projects in Zhejiang Province(Nos.2023C03127,2024C03114,2024C03108)the Natural Science Foundation of China(Nos.22208300,22078294)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LQ23B060007)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-A2023004)Zhejiang Provincial Postdoctoral Science Foundation(No.ZJ2023145).
文摘Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.
基金supported by the National Natural Science Foundation of China(Grant No.22378065,22278077,22278076)。
文摘Designing efficient adsorbents for the deep removal of refractory dibenzothiophene(DBT)from fuel oil is vital for addressing environmental issues such as acid rain.Herein,zinc gluconate and urea-derived porous carbons SF-ZnNC-T(T represents the carbonization temperature)were synthesized without solvents.Through a temperature-controlled process of“melting the zinc gluconate and urea mixture,forming H-bonded polymers,and carbonizing the polymers,”the optimal carbon,SF-ZnNC-900,was obtained with a large surface area(2280 m^(2)g^(-1),highly dispersed Zn sites,and hierarchical pore structures.Consequently,SF-ZnNC-900 demonstrated significantly higher DBT adsorption capacity of43.2 mg S g^(-1),compared to just 4.3 mg S g^(-1)for the precursor.It also demonstrated good reusability,fast adsorption rate,and the ability for ultra-deep desulfurization.The superior DBT adsorption performance resulted from the evaporation of residual zinc species,which generated abundant mesopores that facilitated DBT transformation,as well as the formation of Zn-N_(x) sites that strengthened the host-vip interaction(ΔE=-1.466 e V).The solvent-free synthesized highly dispersed Zn-doped carbon shows great potential for producing sulfur-free fuel oil and for designing metal-loaded carbon adsorbents.
基金supported by the National Natural Science Foundation of China(22408061 and 22468005)Program for Introducing High-Level Talents from Guangxi University,and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2023Z014).
文摘Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Efficient potassium activation is the key to develop high-performance oxygen-rich porous carbon cathodes.Herein,the alkali lignin,extracted from eucalyptus wood by geopolymer-assisted low-alkali pretreatment,is used to prepare oxygen-rich lignin-derived porous carbons(OLPCs)through KOH activation and K_(2)CO_(3)activation at 700-900℃.KOH activation constructs a hierarchical micro-mesoporous structure,while K_(2)CO_(3)activation constructs a microporous structure.Furthermore,K_(2)CO_(3)activation could more efficiently construct active oxygen(C=O)species than KOH activation.The OLPCs prepared by KOH/K_(2)CO_(3)activations at 800℃show the highest microporosity(78.4/87.7%)and C=O content(5.3/8.0 at.%).Due to that C=O and micropore adsorb zinc ions,the OLPCs prepared by K_(2)CO_(3)activation at 800℃with higher C=O content and microporosity deliver superior capacitive performance(256 F g^(-1)at 0.1 A g^(-1))than that by KOH activation at 800℃(224 F g^(-1)at 0.1 A g^(-1)),and excellent cycling stability.This work provides a new insight into the sustainable preparation of oxygenrich porous carbon cathodes through efficient potassium activation for ZIHCs.
基金financially supported by the National Natural Science Foundation of China(No.22302177)the Public Technology Application Project of Jinhua City(No.2022–4-067)the Self Designed Scientific Research of Zhejiang Normal University(No.2021ZS0604)。
文摘Aqueous zinc-based energy storage devices(ZESDs)have garnered considerable interest because of their high specific capacity,abundant zinc reserves,excellent safety,and environmental friendliness.In recent years,various types of boron,nitrogen co-doped carbon(BNC)materials have been developed to improve electrochemical performance of ZESDs.To promote the advancement of these technologies,we herein give a comprehensive review of the progress in BNC materials for ZESDs.The different synthetic methods employed in the preparation of BNC materials,including direct carbonization,template method,chemical vapor deposition,hydrothermal method,etc.,are summarized.These methods play a vital role in tailoring the structure,composition,and properties of BNC materials to optimize their performance in energy storage applications.Furthermore,some key achievements of BNC materials in zinc-air batteries and zinc-ion hybrid supercapacitors are elaborated.Lastly,future challenges and development directions of BNC materials in ZESDs are prospected.This comprehensive review could serve as a valuable resource in the energy storage field,providing insights into the potential of BNC materials in zinc-based energy storage technologies.
基金the China Scholarship Council for financial supportthe Max Planck Society for financial supportOpen Access funding enabled and organized by Projekt DEAL
文摘Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.
基金financially supported by the National Natural Science Foundation of China(22179145,22138013,and 21975287)Shandong Provincial Natural Science Foundation(ZR2020ZD08)+1 种基金Taishan Scholar Project(no.ts201712020)the startup support grant from China University of Petroleum(East China)
文摘Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
文摘Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.
基金supported by the National Natural Science Foundation of China(No.62105277)the Natural Science Foundation of Henan Province(No.232300420139)+4 种基金the International Science and Technology Cooperation Program of Henan Province(No.242102520019)the Internationalization Training of High-Level Talents of Henan ProvinceNanhu Scholars Program for Young Scholars of XYNUGerman Research Foundation(DFG:LE2249/15-1)the Sino-German Center for Research Promotion(No.GZ1579)。
文摘K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most promising anode materials for KIBs,graphitic carbons,especially those with an intermediate structure between the crystalline graphite and amorphous carbons become a hot research focus because of the improved rate capability and enhanced diffusion-controlled capacity at low voltage regions.Herein,we first review the structures of graphitic carbons in the view of graphitic domains and the structure changes in their K-ion intercalation compounds.Then,we summarize the preparation mechanisms and characterizations of graphitic carbons and the influence factors in their degree of graphitization.Furtherly,we illustrate the strategies to optimize their K-ion storage properties from four aspects,namely graphitic domain design,microstructure engineering,electrochemical active component regulation,and defect engineering.Finally,we propose the issues that urgently need to be solved in graphitic carbons and the possible solutions.We hope that this view could offer some inspiration for the further designing and optimizing of graphitic carbons for practical KIBs.
文摘The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.
文摘Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.
文摘Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.
文摘This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).
基金funded by National Natural Science Foundation of China(Grant No.42072149)support of US National Science Foundation grant(Grant No.EAR-1255724)。
文摘Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.
基金supported by the National Natural Science Foundation of China (20803064)the Natural Science Foundation of Zhejiang Province (Y4090348)~~
文摘Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.