The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age roc...The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.展开更多
Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.F...Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.展开更多
Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic ...Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic carbon(OC),daily fine particulate matter(PM_(2.5))samples were collected from March to May 2022 in Pu'er,Southwest China.The concentrations of OC,elemental carbon(EC),levoglucosan(Lev),and potassium from BB(K+BB)during the study period ranged from 5.3 to 31.2μg/m^(3),0.86-13.1μg/m^(3),0.06-0.82μg/m^(3),and 0.05-2.88μg/m^(3),respectively.To eliminate the effects of Lev degradation,this study uses the Aging of Air Mass(AAM)index to correct the atmospheric concentration of Lev and combines Bayesian mixture modeling with a molecular tracer method to assess the original contribution of BB to OC.The results indicated that the AAM index was 0.18±0.05,indicating that the degradation of Lev reached 82%.When considering the degradation of levoglucosan in the atmosphere,the primary source of BB aerosols was crop-straw combustion(71.1%),followed by the combustion of certain hardwoods and softwoods(24.9%)and grasses(4.0%).The original contribution of BB to OC was 62.4%,which was much greater than the contribution when levoglucosan degradation(23.7%)was ignored.The air mass inverse trajectories and Moderate Resolution Imaging Spectroradiometer(MODIS)fire hotspots indicated that the BB plume from Southeast Asia during spring could influence PM_(2.5)long-range transport in remote locations,and the contribution could reach 82%in Southwest China.展开更多
Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remai...Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remains poorly understood.This study aimed to investigate the mechanical properties and failure mechanisms of carbonaceous mudstone filler under different temperature-moisture coupled conditions.Triaxial shear tests were conducted under four temperaturemoisture coupled conditions:dry-heat to dry-cold(DHDC),wet-cold to wet-heat(WCWH),dry-cold to wet-heat(DCWH),and dry-heat to wet-cold(DHWC).The effects of these conditions on the strength characteristics,relative breakage ratio,failure mode,and microscopic morphology were examined.A segmented prediction model based on the DuncanChang model was applied to validate the experimental results under the DHWC condition.The failure mechanisms under different conditions were also analyzed.The results indicate that the degradation of carbonaceous mudstone increases in the following order:DHDC,WCWH,DCWH,and DHWC.Under the DHDC condition,the stress-strain curves exhibit strain-softening behavior,while other conditions show strain-hardening behavior,with peak deviatoric stress occurring at 2%and 4%axial strains,respectively.The shear strength decreases by up to 40%under the DHWC condition but remains nearly unchanged under the DHDC condition,showing a positive correlation with particle breakage.As the number of cycles increases,the failure surfaces gradually move downward.Higher confining pressure shifts failure mode from shear failure to shear slip or localized compression,and eventually to overall compression or expansion failure.The modified Duncan-Chang model accurately predicts the experimental results.These findings provide important guidance for the application of carbonaceous mudstone filler in highway embankment construction in humid mountainous regions.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
Carbonaceous materials in seismic fault zones may considerably influence seismic fault slip;however,the formation mechanism of carbonaceous materials remains unclear.In this study,we proposed a novel hypothesis for th...Carbonaceous materials in seismic fault zones may considerably influence seismic fault slip;however,the formation mechanism of carbonaceous materials remains unclear.In this study,we proposed a novel hypothesis for the formation of carbonaceous materials in fault gouge.Thus,we conducted a CO_(2) hydrogenation experiment in a high-temperature reactor at a co-seismic temperature,with fault gouge formed during the Wenchuan earthquake as the catalyst.Our experimental results demonstrate that carbonaceous materials in fault zones are formed on the fault gouge during the chemical reaction process,suggesting that the carbonaceous materials are possibly generated from the catalytic hydrogenation of CO_(2),followed by thermal cracking of its products.The results of this study provide a theoretical basis for understanding fault behavior and earthquake physics.展开更多
Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanid...Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.展开更多
[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonac...[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonaceous microspheres on adsorption behavior of p-nitroaniline were investigated.[Result] The adsorption amount was affected by temperature slightly,and it decreased with the increase of temperature within a certain range.PHCSs had a higher adsorption capacity as pH was in the range of 2.0-8.0.The adsorption amount of p-nitroaniline was proportional to PHCSs amount within a certain range until it reached a saturation level.The adsorption isotherms of p-nitroaniline appeared to be nonlinear and obeyed to Freundlich equation very well.[Conclusion] The amphiphilic property and the specific chemical functional groups of PHCSs enable them to be a potentially excellent sorbent.展开更多
The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, grap...The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, graphite conductive particles in asphalt-matrix mixtures are investigated. Based on the generalized effective medium theory ( EMT ), the effective thermal and electrical conductivity of carbon fiber/asphalt and graphite/asphalt composites are theoretically elucidated. The theoretical results are found to be in reasonably well agreement with the experimental data. Moreover, the theoretical and experimental results show that the large-aspect-ratio shape of particles can help to achieve a large enhancement of effective conductivity, and the use of disk-like high conductivity particles can limit the additive contents for preserving the volumetric properties and mechanical properties of asphalt composites. The generalized effective medium theory model can be used for predicting the thermal and electrical properties of asphaltmatrix composites, which is still available for most of the thermal/electrical modifications in two-phase composites.展开更多
Carbonaceous debris(CD)is widely distributed in the sandstone of the Daying Uranium Deposit,northern Ordos Basin,and coexists with uranium minerals,which provides a favorable case for studying their relationship.Vitri...Carbonaceous debris(CD)is widely distributed in the sandstone of the Daying Uranium Deposit,northern Ordos Basin,and coexists with uranium minerals,which provides a favorable case for studying their relationship.Vitrinite reflectance(VR),macerals,moisture,volatile matter,ash,total sulfur(S_t)and uranium concentration of CD within the sandstone were studied.The results show that VR ranges from 0.372%Ro to 0.510%Ro with an average value of 0.438%Ro,indicating that CD is in the stage of lignite.The contents of vitrinite(V),inertinite(I)and minerals range from 83.18%–99.48%,0–7.70%,and 0.34%–15.72%,respectively,with the corresponding average value of 95.51%,1.34%,and 3.15%,respectively which indicates that V is the major maceral.Moisture on air dried basis(M_(ad)),volatile matter yield on dry,ash-free basis(V_(daf)),ash yield on dried basis(A_d)and S_t mostly range from 7.95%–16.09%,44.70%–66.54%,4.84%–26.24% and 0.24%–1.12%,respectively,while their average values are 12.43%,53.41%,16.57% and 0.77%,respectively.It suggests that CD is of medium-high moisture,super-high volatile matter,low-medium ash and low sulfur.Uranium concentration ranges from 29 ppm to 92 ppm with an average value of 50 ppm,and uranium concentration increases with the decreased distance to CD.On the whole,M_(ad )and V_(daf) decrease with increasing burial depth,which indicates that CD experienced the burial metamorphism.However,M_(ad) and V_(daf) obviously decrease in uranium-rich areas whereas A_d and S_(t )noticeably increase.Comprehensive studies suggest that there is a certain relationship between uranium enrichment and CD.CD in the stage of lignite helps the adsorption of uranium.On one hand,radioactivity uranium enrichment makes organic matter maturation increase with a decrease in moisture and volatile matter.On the other hand,an increase in organic matter maturation,caused by radioactivity uranium enrichment,results in an increase in uranium minerals,which is instructive in the study of regional uranium mineralization and metallogenic regularity.展开更多
The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause nega...The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.展开更多
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-ri...Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.展开更多
A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roastin...A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.展开更多
A continuous air and precipitation sampling for carbonaceous particles was conducted in a field observatory beside Nam Co, Central Tibetan Plateau during July of 2006 through January of 2007. Organic carbon (OC) was...A continuous air and precipitation sampling for carbonaceous particles was conducted in a field observatory beside Nam Co, Central Tibetan Plateau during July of 2006 through January of 2007. Organic carbon (OC) was the dominant composition of the carbonaceous particles both in the atmosphere (1660 ng/m ^3 ) and precipitation (476 ng/g) in this area, while the average elemental carbon (BC) concentrations in the atmosphere and precipitation were only 82 ng/m 3 and 8 ng/g, respectively. Very high OC/BC ratio suggested local secondary organic carbon could be a dominant contribution to OC over the Nam Co region, while BC could be mainly originated from Southern Asia, as indicated by trajectory analysis and aerosol optical depth. Comparison between the BC concentrations measured in Lhasa, those at "Nepal Climate Observatory at Pyramid (NCO-P)" site on the southern slope of the Himalayas, and Nam Co suggested BC in the Nam Co region reflected a background with weak anthropogenic disturbances and the emissions from Lhasa might have little impact on the atmospheric environment here, while the pollutants from the Indo-Gangetic Basin of Southern Asia could be transported to the Nam Co region by both the summer monsoon and the westerly.展开更多
This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mud...This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.展开更多
The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Four...The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Fourier transform infrared spectroscopy(FT-IR) ,and adsorption of nitrogen.The surface analysis showed that the carbonaceous adsorbent had good specific surface and porosity(394 m 2 ·g-1of BET surface,0.12 and 0.10 ml·g-1of microporous and mesoporous volume,respectively) .The oxygen functional groups such as OH,C O and C O were found on the surface by FTIR and XPS(X-ray photoelectron spectroscopy) .The adsorption of elemental mercury(Hg0) on the carbonaceous adsorbent was studied in a fixed bed reactor.The dynamic adsorption capacity of carbonaceous adsorbent increased with influent mercury concentration,from 23.6μg·g-1at 12.58μg·m-3to 87.9μg·g-1at 72.50μg·m-3,and decreased as the adsorption temperature increased,from 246 μg·g-1 at 25°C to 61.3μg·g-1 at 140°C,when dry nitrogen was used as the carrier gas.The carbonaceous adsorbent presented higher dynamic adsorption capacity than activated carbon,which was 81.2μg·g-1and 53.8μg·g-1respectively.The adsorption data were fitted to the Langmuir adsorption model.The physical and chemical adsorption were identified on the adsorbent.展开更多
This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (S...This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE展开更多
The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed an...The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed and effective support is of high importance for achieving safe and efficient tunnel construction.The No.2 inclined shaft of Muzhailing Tunnel was taken as the engineering background prototype,for which,a similar model test was conducted to evaluate the effect of highly pretightened constant resistance(NPR,Negative Poisson’s Ratio)anchor cable support provision to the geologically complex carbonaceous slate at different depths.Two schemes were proposed during testing:one scheme was without support and the second was with asymmetric support from highly pre-tightened constant resistance anchor cable.Digital speckle displacement analysis system and micro-groundstress sensors were employed to measure the deformation and shear stress distribution of the tunnel.The results demonstrated that through the second support scheme,the deformation of the surrounding rock could be effectively ameliorated,while this support scheme was applied on the project site of the No.2 inclined shaft,to explore the rationality of the scheme through field engineering tests.On-site monitoring indicated that the deformation of the surrounding rock was within the reasonable design range and the problem of severe tunnel deformation was effectively controlled.The research methods and related conclusions can be used as a reference for the treatment of large deformation problems in deep-buried soft rock tunnels.展开更多
While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and...While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.展开更多
Electrochemical synthesis of hydrogen peroxide(H2 O2)provides a clean and safe technology for large-scale H2 O2 production.The core of this project is the development of highly active and highly selective catalysts.Re...Electrochemical synthesis of hydrogen peroxide(H2 O2)provides a clean and safe technology for large-scale H2 O2 production.The core of this project is the development of highly active and highly selective catalysts.Recent studies demonstrate that carbonaceous materials are favorable catalysts because of their low-cost and tunable surface structures.This brief review first summarizes the strategies of carbonaceous material engineering for selective two-electron O2 reduction reaction and discusses potential mechanisms.In addition,several device designs using carbonaceous materials as catalysts for H2 O2 production are introduced.Finally,research directions are proposed for practical application and performance improvement.展开更多
基金The University of Malaya's postdoctoral fellowship program has been acknowledged by the first author and is associated with grant number IF064-2019the Department of Science and Technology (Project No. SB/S4/ES-681/2013), Government of India, for their supportthe Researchers Supporting Project number (RSPD2024R546) at King Saud University in Riyadh, Saudi Arabia
文摘The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.
基金supported by the National Natural Science Foundation of China (Grant No.U22A20234)Hubei Province key Research and Development Project (Grant No.2023BCB121).
文摘Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.
基金supported by the Basic Research Key Project of Science and Technology Department of Yunnan Province(No.202401AS070116)the National Natural Science Foundation of China(No.21966016)。
文摘Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic carbon(OC),daily fine particulate matter(PM_(2.5))samples were collected from March to May 2022 in Pu'er,Southwest China.The concentrations of OC,elemental carbon(EC),levoglucosan(Lev),and potassium from BB(K+BB)during the study period ranged from 5.3 to 31.2μg/m^(3),0.86-13.1μg/m^(3),0.06-0.82μg/m^(3),and 0.05-2.88μg/m^(3),respectively.To eliminate the effects of Lev degradation,this study uses the Aging of Air Mass(AAM)index to correct the atmospheric concentration of Lev and combines Bayesian mixture modeling with a molecular tracer method to assess the original contribution of BB to OC.The results indicated that the AAM index was 0.18±0.05,indicating that the degradation of Lev reached 82%.When considering the degradation of levoglucosan in the atmosphere,the primary source of BB aerosols was crop-straw combustion(71.1%),followed by the combustion of certain hardwoods and softwoods(24.9%)and grasses(4.0%).The original contribution of BB to OC was 62.4%,which was much greater than the contribution when levoglucosan degradation(23.7%)was ignored.The air mass inverse trajectories and Moderate Resolution Imaging Spectroradiometer(MODIS)fire hotspots indicated that the BB plume from Southeast Asia during spring could influence PM_(2.5)long-range transport in remote locations,and the contribution could reach 82%in Southwest China.
基金the financial support by the National Natural Science Foundation of China(52378440,42477143)the Key Science and Technology Program in the Transportation Industry(2022-MS1-032,2022-MS5-125)+2 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20251302)the Science and Technology Innovation Program of Hunan Province(2024RC3166)the Guangxi Key Research and Development Program(AB23075184)。
文摘Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remains poorly understood.This study aimed to investigate the mechanical properties and failure mechanisms of carbonaceous mudstone filler under different temperature-moisture coupled conditions.Triaxial shear tests were conducted under four temperaturemoisture coupled conditions:dry-heat to dry-cold(DHDC),wet-cold to wet-heat(WCWH),dry-cold to wet-heat(DCWH),and dry-heat to wet-cold(DHWC).The effects of these conditions on the strength characteristics,relative breakage ratio,failure mode,and microscopic morphology were examined.A segmented prediction model based on the DuncanChang model was applied to validate the experimental results under the DHWC condition.The failure mechanisms under different conditions were also analyzed.The results indicate that the degradation of carbonaceous mudstone increases in the following order:DHDC,WCWH,DCWH,and DHWC.Under the DHDC condition,the stress-strain curves exhibit strain-softening behavior,while other conditions show strain-hardening behavior,with peak deviatoric stress occurring at 2%and 4%axial strains,respectively.The shear strength decreases by up to 40%under the DHWC condition but remains nearly unchanged under the DHDC condition,showing a positive correlation with particle breakage.As the number of cycles increases,the failure surfaces gradually move downward.Higher confining pressure shifts failure mode from shear failure to shear slip or localized compression,and eventually to overall compression or expansion failure.The modified Duncan-Chang model accurately predicts the experimental results.These findings provide important guidance for the application of carbonaceous mudstone filler in highway embankment construction in humid mountainous regions.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
文摘Carbonaceous materials in seismic fault zones may considerably influence seismic fault slip;however,the formation mechanism of carbonaceous materials remains unclear.In this study,we proposed a novel hypothesis for the formation of carbonaceous materials in fault gouge.Thus,we conducted a CO_(2) hydrogenation experiment in a high-temperature reactor at a co-seismic temperature,with fault gouge formed during the Wenchuan earthquake as the catalyst.Our experimental results demonstrate that carbonaceous materials in fault zones are formed on the fault gouge during the chemical reaction process,suggesting that the carbonaceous materials are possibly generated from the catalytic hydrogenation of CO_(2),followed by thermal cracking of its products.The results of this study provide a theoretical basis for understanding fault behavior and earthquake physics.
基金Projects(51174062,51104036)supported by the National Natural Science Foundation of ChinaProject(2012BAE06B05)supported by the National Science and Technology Support Program of China during the 12th Five-Year Plan Period+1 种基金Projects(2012AA061502,2012AA061501)supported by the National High-Tech Research and Development Program of ChinaProjects(N120602006,N110302002,N110602005)supported by Fundamental Research Funds for the Central Universities of China
文摘Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.
文摘[Objective] The research was aimed to study the adsorption behavior of p-nitroaniline from aqueous solution by porous hollow carbonaceous spheres (PHCSs).[Method] The effects of pH,temperature and amount of carbonaceous microspheres on adsorption behavior of p-nitroaniline were investigated.[Result] The adsorption amount was affected by temperature slightly,and it decreased with the increase of temperature within a certain range.PHCSs had a higher adsorption capacity as pH was in the range of 2.0-8.0.The adsorption amount of p-nitroaniline was proportional to PHCSs amount within a certain range until it reached a saturation level.The adsorption isotherms of p-nitroaniline appeared to be nonlinear and obeyed to Freundlich equation very well.[Conclusion] The amphiphilic property and the specific chemical functional groups of PHCSs enable them to be a potentially excellent sorbent.
基金The National Natural Science Foundation of China(No.50906073,31070517)China Postdoctoral Science Foundation(No.20110491332)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101009B)the Science and Technology Development Plan of North Jiangsu(No.BC2012444)
文摘The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, graphite conductive particles in asphalt-matrix mixtures are investigated. Based on the generalized effective medium theory ( EMT ), the effective thermal and electrical conductivity of carbon fiber/asphalt and graphite/asphalt composites are theoretically elucidated. The theoretical results are found to be in reasonably well agreement with the experimental data. Moreover, the theoretical and experimental results show that the large-aspect-ratio shape of particles can help to achieve a large enhancement of effective conductivity, and the use of disk-like high conductivity particles can limit the additive contents for preserving the volumetric properties and mechanical properties of asphalt composites. The generalized effective medium theory model can be used for predicting the thermal and electrical properties of asphaltmatrix composites, which is still available for most of the thermal/electrical modifications in two-phase composites.
基金supported by the 973 Project (No. 2015CB453003)Open Fund of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education (No. TPR-2015-09)+2 种基金Geological Survey Foundation of Ministry of Finance of the People’s Republic of China (No. 12120115013701)Natural Science Foundation of China (No. 41502105)Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan) (No. G1323511660)
文摘Carbonaceous debris(CD)is widely distributed in the sandstone of the Daying Uranium Deposit,northern Ordos Basin,and coexists with uranium minerals,which provides a favorable case for studying their relationship.Vitrinite reflectance(VR),macerals,moisture,volatile matter,ash,total sulfur(S_t)and uranium concentration of CD within the sandstone were studied.The results show that VR ranges from 0.372%Ro to 0.510%Ro with an average value of 0.438%Ro,indicating that CD is in the stage of lignite.The contents of vitrinite(V),inertinite(I)and minerals range from 83.18%–99.48%,0–7.70%,and 0.34%–15.72%,respectively,with the corresponding average value of 95.51%,1.34%,and 3.15%,respectively which indicates that V is the major maceral.Moisture on air dried basis(M_(ad)),volatile matter yield on dry,ash-free basis(V_(daf)),ash yield on dried basis(A_d)and S_t mostly range from 7.95%–16.09%,44.70%–66.54%,4.84%–26.24% and 0.24%–1.12%,respectively,while their average values are 12.43%,53.41%,16.57% and 0.77%,respectively.It suggests that CD is of medium-high moisture,super-high volatile matter,low-medium ash and low sulfur.Uranium concentration ranges from 29 ppm to 92 ppm with an average value of 50 ppm,and uranium concentration increases with the decreased distance to CD.On the whole,M_(ad )and V_(daf) decrease with increasing burial depth,which indicates that CD experienced the burial metamorphism.However,M_(ad) and V_(daf) obviously decrease in uranium-rich areas whereas A_d and S_(t )noticeably increase.Comprehensive studies suggest that there is a certain relationship between uranium enrichment and CD.CD in the stage of lignite helps the adsorption of uranium.On one hand,radioactivity uranium enrichment makes organic matter maturation increase with a decrease in moisture and volatile matter.On the other hand,an increase in organic matter maturation,caused by radioactivity uranium enrichment,results in an increase in uranium minerals,which is instructive in the study of regional uranium mineralization and metallogenic regularity.
基金supported by Na-tional Basic Research Program of China (Grant No.2006CB403707)the public Meteorology Special Foundation of MOST (Grant No. GYHY200706036)the National Key Technology R & D Program (Grant No.2007BAC03A0)
文摘The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.
基金This work was supported by the pilot project of knowledge-innovation of Chinese Academy of Sciences(Grant No:KZCX3-SW-123)the National Natural Science Foundation of China(Grant No.40025311).
文摘Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.
文摘A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.
基金supported by National Basic Research Program(973) of China(No.2007CB411503)the National Natural Science Foundation of China(No.40901046)+1 种基金the State Key Laboratory of Cryospheric Sciences,and Chinese Academy of Sciences(No.SKLCS-ZZ-2008-01,SKLCS08-08)the China Meteorological Administration(No.CCSF2006-3)
文摘A continuous air and precipitation sampling for carbonaceous particles was conducted in a field observatory beside Nam Co, Central Tibetan Plateau during July of 2006 through January of 2007. Organic carbon (OC) was the dominant composition of the carbonaceous particles both in the atmosphere (1660 ng/m ^3 ) and precipitation (476 ng/g) in this area, while the average elemental carbon (BC) concentrations in the atmosphere and precipitation were only 82 ng/m 3 and 8 ng/g, respectively. Very high OC/BC ratio suggested local secondary organic carbon could be a dominant contribution to OC over the Nam Co region, while BC could be mainly originated from Southern Asia, as indicated by trajectory analysis and aerosol optical depth. Comparison between the BC concentrations measured in Lhasa, those at "Nepal Climate Observatory at Pyramid (NCO-P)" site on the southern slope of the Himalayas, and Nam Co suggested BC in the Nam Co region reflected a background with weak anthropogenic disturbances and the emissions from Lhasa might have little impact on the atmospheric environment here, while the pollutants from the Indo-Gangetic Basin of Southern Asia could be transported to the Nam Co region by both the summer monsoon and the westerly.
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+3 种基金Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology,ChinaProject(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(SJCX202017) supported by the Practical Innovation Program for Graduates of Changsha University of Science & Technology, China。
文摘This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.
基金Supported by the Science and Technology Planning Project of Guangdong(2006A36701004)the Basic Research Program of the Ministry of Environmental Protection(zx_200910_02)
文摘The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Fourier transform infrared spectroscopy(FT-IR) ,and adsorption of nitrogen.The surface analysis showed that the carbonaceous adsorbent had good specific surface and porosity(394 m 2 ·g-1of BET surface,0.12 and 0.10 ml·g-1of microporous and mesoporous volume,respectively) .The oxygen functional groups such as OH,C O and C O were found on the surface by FTIR and XPS(X-ray photoelectron spectroscopy) .The adsorption of elemental mercury(Hg0) on the carbonaceous adsorbent was studied in a fixed bed reactor.The dynamic adsorption capacity of carbonaceous adsorbent increased with influent mercury concentration,from 23.6μg·g-1at 12.58μg·m-3to 87.9μg·g-1at 72.50μg·m-3,and decreased as the adsorption temperature increased,from 246 μg·g-1 at 25°C to 61.3μg·g-1 at 140°C,when dry nitrogen was used as the carrier gas.The carbonaceous adsorbent presented higher dynamic adsorption capacity than activated carbon,which was 81.2μg·g-1and 53.8μg·g-1respectively.The adsorption data were fitted to the Langmuir adsorption model.The physical and chemical adsorption were identified on the adsorbent.
基金supported by the National Major Science and Technology Project on Water Pollution Control and Management of China (No. 2009ZX07424-003)the National Natural Science Foundation of China (No.51108327)the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRY11015)
文摘This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE
基金supported by the National Key Research and Development Program of China(No.2016YFC0600901)the Fundamental Research Funds for the Central Universities(No.2015QB02)。
文摘The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed and effective support is of high importance for achieving safe and efficient tunnel construction.The No.2 inclined shaft of Muzhailing Tunnel was taken as the engineering background prototype,for which,a similar model test was conducted to evaluate the effect of highly pretightened constant resistance(NPR,Negative Poisson’s Ratio)anchor cable support provision to the geologically complex carbonaceous slate at different depths.Two schemes were proposed during testing:one scheme was without support and the second was with asymmetric support from highly pre-tightened constant resistance anchor cable.Digital speckle displacement analysis system and micro-groundstress sensors were employed to measure the deformation and shear stress distribution of the tunnel.The results demonstrated that through the second support scheme,the deformation of the surrounding rock could be effectively ameliorated,while this support scheme was applied on the project site of the No.2 inclined shaft,to explore the rationality of the scheme through field engineering tests.On-site monitoring indicated that the deformation of the surrounding rock was within the reasonable design range and the problem of severe tunnel deformation was effectively controlled.The research methods and related conclusions can be used as a reference for the treatment of large deformation problems in deep-buried soft rock tunnels.
基金Supported by the National Natural Science Foundation of China(51704059,51474169)
文摘While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.
基金supported by Tianjin Science and Technology Project(No.19YFSLQY00070)Foundation for State Key Laboratory of Organic–Inorganic Composites,Beijing University of Chemical Technology(No.oic-201901004)Hundred Talent Program of the Chinese Academy of Sciences。
文摘Electrochemical synthesis of hydrogen peroxide(H2 O2)provides a clean and safe technology for large-scale H2 O2 production.The core of this project is the development of highly active and highly selective catalysts.Recent studies demonstrate that carbonaceous materials are favorable catalysts because of their low-cost and tunable surface structures.This brief review first summarizes the strategies of carbonaceous material engineering for selective two-electron O2 reduction reaction and discusses potential mechanisms.In addition,several device designs using carbonaceous materials as catalysts for H2 O2 production are introduced.Finally,research directions are proposed for practical application and performance improvement.