期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
1
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 HIERARCHICAL meso/micro-pore structure HYDROGEN ETCHING Single site Fe-N-C catalysts carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
在线阅读 下载PDF
Correlating Fe source with Fe-N-C active site construction: Guidancefor rational design of high-performance ORR catalyst 被引量:5
2
作者 Liqin Gao Meiling Xiao +4 位作者 Zhao Jin Changpeng Liu Jianbing Zhu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1668-1673,共6页
Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne o... Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts usingZIF-8 and various iron salts (Fe(acac)3, FeCI3, Fe(NO3)3) as precusors. We found that the iron precursors,mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology ofFe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore,significantly affecting the ORR activity. Among the three iron sources, Fe(acac)3 is most advantageous tothe preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated bestORR performance. 展开更多
关键词 carbon-nitrogen-coordinated iron (FEN4) Oxygen reduction reaction Iron source Molecular size HYDROLYSIS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部