Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollut...With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollution in the water environment.Renewable carbon-based materials,as a kind of adsorbent widely used in wastewater treatment,have been the focus of scholars’research for many years.In this review,the preparation methods,characteristics,and applications of renewable carbon-based materials(biochar,activated carbon,carbon nanotubes,and graphene)for the removal of arsenic and antimony are described in detail.Based on adsorption kinetics,isothermal adsorption,temperature,pH,and coexisting ions,we discuss the process of adsorption of arsenic and antimony by renewable carbon-based materials,explore the mechanism of adsorption of anions in water by renewable carbon-basedmaterials,and comparatively analyze the differences in adsorption performance of arsenic and antimony by different renewable carbon-based materials.Compared with biochar,activated carbon,carbon nanotube,and graphene renewable materials loaded with iron-manganese oxides have better removal effects on arsenic and antimony wastewater.Extensive research data shows that biochar,as a renewable material,is recommended,followed by activated carbon.Both are recommended because of their excellent adsorption properties and low production costs.Finally,the prospects and challenges of the application of renewable carbon-based materials in wastewater treatment are discussed,and the directions and development trends of future research are pointed out,which provide references and insights for further promoting the application of renewable carbon-based materials in wastewater treatment.展开更多
Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure c...Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure carbon materials still have the disadvantage of low theoretical capacity.New design and preparation strategies for carbon-based composites can overcome the problems.Based on the analysis of Na^(+)storage mechanism of carbon-based composite materials,the factors influencing the performance of SIBs are discussed.Adjustment methods for improving the electrochemical performance of electrodes are evaluated in detail,including carbon skeleton design and composite material selection.Some advanced composite materials,i.e.,carbon-conversion composite and carbon-MXene composite,are also being explored.New advances in flexible electrodes based on carbon-based composite on flexible SIBs is investigated.The existing issues and future issues of carbon-based composite materials are discussed.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that th...Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that the use of different types of additives or accelerantstowards enhancing the products yield and fermentation quality has got much attention,with carbon-based materials emerging as vital facilitators.Based on bibliometrics insights,this paper firstly commences with a comprehensive review of the past two decades’progress in applying carbon-based materials within anaerobic fermentation contexts.Subsequently,the recent advancements made by different research groups in order to enhance the performance of CE systemperformance are reviewed,with particular focus on the application,impact,and underlying mechanisms of carbon-based materials in expediting MCFAs biosynthesis via CE.Finally,the future research direction is prospected,aiming to inform innovative material design and sophisticated technological applications,as well as provide a reference for improving the efficiency of anaerobic fermentation of MCFAs using carbon-based material,thereby contributing to the broader discourse on enhancing sustainability and efficiency in bio-based processes.展开更多
Hydrogen peroxide(H_(2)O_(2))is an essential environmentally friendly oxidant with a wide range of applications.Compared with traditional anthraquinone processes,the electrochemical synthesis of H_(2)O_(2)via the two-...Hydrogen peroxide(H_(2)O_(2))is an essential environmentally friendly oxidant with a wide range of applications.Compared with traditional anthraquinone processes,the electrochemical synthesis of H_(2)O_(2)via the two-electron oxygen reduction reaction and two-electron water oxidation reaction offers a more promising and sustainable alternative.Carbon-based electrocatalysts playing a crucial role in these processes owing to their abundance and facile functionalization.This review focuses on the strategic design of carbon-based electrocatalysts to enhance H_(2)O_(2)production.We begin by highlighting the significance of H_(2)O_(2)and the fundamental mechanisms of electrochemical process.Subsequently,we present a detailed analysis of key factors affecting catalytic performance,concentrating electronic structure and geometric structure regulation as primary catalyst design approaches to improve H_(2)O_(2)production.Interface engineering and pH effects are also emphasized for their crucial roles.Finally,the major challenges and prospects for advancing H_(2)O_(2)production towards practical applications are discussed.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
Electrocatalytic carbon dioxide(CO_(2))reduction is an important way to achieve carbon neutrality by converting CO_(2)in-to high-value-added chemicals using electric energy.Carbon-based materials are widely used in va...Electrocatalytic carbon dioxide(CO_(2))reduction is an important way to achieve carbon neutrality by converting CO_(2)in-to high-value-added chemicals using electric energy.Carbon-based materials are widely used in various electrochemical reactions,including electrocatalytic CO_(2)reduction,due to their low cost and high activity.In recent years,defect engineering has attracted wide attention by constructing asymmetric defect centers in the materials,which can optimize the physicochemical properties of the mater-ial and improve its electrocatalytic activity.This review summarizes the types,methods of formation and defect characterization tech-niques of defective carbon-based materials.The advantages of defect engineering and the advantages and disadvantages of various defect formation methods and characterization techniques are also evaluated.Finally,the challenges of using defective carbon-based materials in electrocatalytic CO_(2)reduction are investigated and opportunities for their use are discussed.It is believed that this re-view will provide suggestions and guidance for developing defective carbon-based materials for CO_(2)reduction.展开更多
Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecologic...Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecological risks associated with carbon-based nanomaterials have received increasing attention.However,the biological safety of carbon based nanomaterials has not been systematically studied.In this study,we used different types of carbon materials,namely,graphene oxide(GO),single-walled carbon nanotubes(SWCNTs),and multiwalled carbon nanotubes(MWCNTs),as models to observe their distribution and oxidative damage in vivo.The results of Histopathological and ultrastructural examinations indicated that the liver and lungs were the main accumulation targets of these nanomaterials.SR-μ-XRF analysis revealed that SWCNTs and MWCNTs might be present in the brain.This shows that the three types of carbon-based nanomaterials could cross the gas-blood barrier and eventually reach the liver tissue.In addition,SWCNTs and MWCNTs could cross the blood-brain barrier and accumulate in the cerebral cortex.The increase in ROS and MDA levels and the decrease in GSH,SOD,and CAT levels indicated that the three types of nanomaterials might cause oxidative stress in the liver.This suggests that direct instillation of these carbon-based nanomaterials into rats could induce ROS generation.In addition,iron(Fe)contaminants in these nanomaterials were a definite source of free radicals.However,these nanomaterials did not cause obvious damage to the rat brain tissue.The deposition of selenoprotein in the rat brain was found to be related to oxidative stress and Fe deficiency.This information may support the development of secure and reasonable applications of the studied carbon-based nanomaterials.展开更多
The identification of indoor harmful gases is imperative due to their significant threats to human health and safety.To achieve accurate identification,an effective strategy of constructing a sensor array combined wit...The identification of indoor harmful gases is imperative due to their significant threats to human health and safety.To achieve accurate identification,an effective strategy of constructing a sensor array combined with the pattern recognition algorithm is employed.Carbon-based thin-film transistors are selected as the sensor array unit,with semiconductor carbon nanotubes(CNTs)within the TFT channels modified with different metals(Au,Cu and Ti)for selective responses to NH_(3),H_(2)S and HCHO,respectively.For accurate gas species identification,an identification mode that combines linear discriminant analysis algorithms and logistic regression classifier is developed.The test results demonstrate that by preprocessing the sensor array’s sensing data with the LDA algorithm and subsequently employing the LR classifier for identification,a 100%recognition rate can be achieved for three target gases(NH3,H2S and HCHO).This work provides significant guidance for future applications of chip-level gas sensors in the realms of the Internet of Things and Artificial Intelligence.展开更多
Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing ...Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.展开更多
To tackle the aggravating electromagnetic wave(EMW)pollution issues,high-efficiency EMW absorption materials are urgently explored.Metal-organic framework(MOF)derivatives have been intensively investigated for EMW abs...To tackle the aggravating electromagnetic wave(EMW)pollution issues,high-efficiency EMW absorption materials are urgently explored.Metal-organic framework(MOF)derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures,which is expected to satisfy diverse application requirements.The extensive developments on MOF derivatives demonstrate its significantly important role in this research area.Particularly,MOF derivatives deliver huge performance superiorities in light weight,broad bandwidth,and robust loss capacity,which are attributed to the outstanding impedance matching,multiple attenuation mechanisms,and destructive interference effect.Herein,we summarized the relevant theories and evaluation methods,and categorized the state-of-the-art research progresses on MOF derivatives in EMW absorption field.In spite of lots of challenges to face,MOF derivatives have illuminated infinite potentials for further development as EMW absorption materials.展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-ba...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.展开更多
Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh...Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.展开更多
Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magne...Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.展开更多
Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman s...Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role.展开更多
The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and...The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.展开更多
With its high theoretical capacity,lithium(Li)metal is recognized as the most potential anode for realizing a high-performance energy storage system.A series of questions(severe safety hazard,low Coulombic efficiency,...With its high theoretical capacity,lithium(Li)metal is recognized as the most potential anode for realizing a high-performance energy storage system.A series of questions(severe safety hazard,low Coulombic efficiency,short lifetime,etc.)induced by uncontrollable dendrites growth,unstable solid electrolyte interface layer,and large volume change,make practical application of Li-metal anodes still a threshold.Due to their highly appealing properties,carbon-based materials as hosts to composite with Li metal have been passionately investigated for improving the performance of Li-metal batteries.This review displays an overview of the critical role of carbon-based hosts for improving the comprehensive performance of Li-metal anodes.Based on correlated mainstream models,the main failure mechanism of Li-metal anodes is introduced.The advantages and strategies of carbon-based hosts to address the corresponding challenges are generalized.The unique function,existing limitation,and recent research progress of key carbon-based host materials for Li-metal anodes are reviewed.Finally,a conclusion and an outlook for future research of carbon-based hosts are presented.This review is dedicated to summarizing the advances of carbon-based materials hosts in recent years and providing a reference for the further development of carbonbased hosts for advanced Li-metal anodes.展开更多
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%...By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.展开更多
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金funded by the following grants,including the Key Research and Development Programof Shaanxi Province(Nos.2023-LL-QY-42,2024NC-ZDCYL-02-05)the Xi’an University of Architecture and Technology Research Initiation Grant Program(No.1960323102)+1 种基金the Xi’an University of Architecture and Technology Special Program for Cultivation of Frontier Interdisciplinary Fields(No.X20230079)the Open Fund for the Key Laboratory of Soil and Plant Nutrition of Ningxia(No.ZHS202401).
文摘With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollution in the water environment.Renewable carbon-based materials,as a kind of adsorbent widely used in wastewater treatment,have been the focus of scholars’research for many years.In this review,the preparation methods,characteristics,and applications of renewable carbon-based materials(biochar,activated carbon,carbon nanotubes,and graphene)for the removal of arsenic and antimony are described in detail.Based on adsorption kinetics,isothermal adsorption,temperature,pH,and coexisting ions,we discuss the process of adsorption of arsenic and antimony by renewable carbon-based materials,explore the mechanism of adsorption of anions in water by renewable carbon-basedmaterials,and comparatively analyze the differences in adsorption performance of arsenic and antimony by different renewable carbon-based materials.Compared with biochar,activated carbon,carbon nanotube,and graphene renewable materials loaded with iron-manganese oxides have better removal effects on arsenic and antimony wastewater.Extensive research data shows that biochar,as a renewable material,is recommended,followed by activated carbon.Both are recommended because of their excellent adsorption properties and low production costs.Finally,the prospects and challenges of the application of renewable carbon-based materials in wastewater treatment are discussed,and the directions and development trends of future research are pointed out,which provide references and insights for further promoting the application of renewable carbon-based materials in wastewater treatment.
基金support from the National Natural Science Foundation of China(52376216,52006194,52006191)the Key Research and Development Program of Shaanxi(2023-YBGY-054).
文摘Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure carbon materials still have the disadvantage of low theoretical capacity.New design and preparation strategies for carbon-based composites can overcome the problems.Based on the analysis of Na^(+)storage mechanism of carbon-based composite materials,the factors influencing the performance of SIBs are discussed.Adjustment methods for improving the electrochemical performance of electrodes are evaluated in detail,including carbon skeleton design and composite material selection.Some advanced composite materials,i.e.,carbon-conversion composite and carbon-MXene composite,are also being explored.New advances in flexible electrodes based on carbon-based composite on flexible SIBs is investigated.The existing issues and future issues of carbon-based composite materials are discussed.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金financially supported by the National Key R&D Program of China(No.2019YFC1906600)the National Natural Science Foundation of China(No.52000132).
文摘Microbial chain elongation(CE),utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids(MCFAs),merges as a promising strategy in resource sustainability.Recently,it has pivoted that the use of different types of additives or accelerantstowards enhancing the products yield and fermentation quality has got much attention,with carbon-based materials emerging as vital facilitators.Based on bibliometrics insights,this paper firstly commences with a comprehensive review of the past two decades’progress in applying carbon-based materials within anaerobic fermentation contexts.Subsequently,the recent advancements made by different research groups in order to enhance the performance of CE systemperformance are reviewed,with particular focus on the application,impact,and underlying mechanisms of carbon-based materials in expediting MCFAs biosynthesis via CE.Finally,the future research direction is prospected,aiming to inform innovative material design and sophisticated technological applications,as well as provide a reference for improving the efficiency of anaerobic fermentation of MCFAs using carbon-based material,thereby contributing to the broader discourse on enhancing sustainability and efficiency in bio-based processes.
基金funding supporting from the National Natural Science Foundation of China(Grant No.22125903,22439003,22309176)National Key R@D Program of China(Grants 2022YFA1504100)+2 种基金DICP(DICP I202471)the State Key Laboratory of Catalysis(No:2024SKL-A-001)Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508,Grant E411070316)。
文摘Hydrogen peroxide(H_(2)O_(2))is an essential environmentally friendly oxidant with a wide range of applications.Compared with traditional anthraquinone processes,the electrochemical synthesis of H_(2)O_(2)via the two-electron oxygen reduction reaction and two-electron water oxidation reaction offers a more promising and sustainable alternative.Carbon-based electrocatalysts playing a crucial role in these processes owing to their abundance and facile functionalization.This review focuses on the strategic design of carbon-based electrocatalysts to enhance H_(2)O_(2)production.We begin by highlighting the significance of H_(2)O_(2)and the fundamental mechanisms of electrochemical process.Subsequently,we present a detailed analysis of key factors affecting catalytic performance,concentrating electronic structure and geometric structure regulation as primary catalyst design approaches to improve H_(2)O_(2)production.Interface engineering and pH effects are also emphasized for their crucial roles.Finally,the major challenges and prospects for advancing H_(2)O_(2)production towards practical applications are discussed.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
文摘Electrocatalytic carbon dioxide(CO_(2))reduction is an important way to achieve carbon neutrality by converting CO_(2)in-to high-value-added chemicals using electric energy.Carbon-based materials are widely used in various electrochemical reactions,including electrocatalytic CO_(2)reduction,due to their low cost and high activity.In recent years,defect engineering has attracted wide attention by constructing asymmetric defect centers in the materials,which can optimize the physicochemical properties of the mater-ial and improve its electrocatalytic activity.This review summarizes the types,methods of formation and defect characterization tech-niques of defective carbon-based materials.The advantages of defect engineering and the advantages and disadvantages of various defect formation methods and characterization techniques are also evaluated.Finally,the challenges of using defective carbon-based materials in electrocatalytic CO_(2)reduction are investigated and opportunities for their use are discussed.It is believed that this re-view will provide suggestions and guidance for developing defective carbon-based materials for CO_(2)reduction.
基金the National Natural Science Foundation of the Henan University(21IRTSTHN011).
文摘Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecological risks associated with carbon-based nanomaterials have received increasing attention.However,the biological safety of carbon based nanomaterials has not been systematically studied.In this study,we used different types of carbon materials,namely,graphene oxide(GO),single-walled carbon nanotubes(SWCNTs),and multiwalled carbon nanotubes(MWCNTs),as models to observe their distribution and oxidative damage in vivo.The results of Histopathological and ultrastructural examinations indicated that the liver and lungs were the main accumulation targets of these nanomaterials.SR-μ-XRF analysis revealed that SWCNTs and MWCNTs might be present in the brain.This shows that the three types of carbon-based nanomaterials could cross the gas-blood barrier and eventually reach the liver tissue.In addition,SWCNTs and MWCNTs could cross the blood-brain barrier and accumulate in the cerebral cortex.The increase in ROS and MDA levels and the decrease in GSH,SOD,and CAT levels indicated that the three types of nanomaterials might cause oxidative stress in the liver.This suggests that direct instillation of these carbon-based nanomaterials into rats could induce ROS generation.In addition,iron(Fe)contaminants in these nanomaterials were a definite source of free radicals.However,these nanomaterials did not cause obvious damage to the rat brain tissue.The deposition of selenoprotein in the rat brain was found to be related to oxidative stress and Fe deficiency.This information may support the development of secure and reasonable applications of the studied carbon-based nanomaterials.
基金financially supported by the National Natural Science Foundation of China(Nos.62071410 and62101477)Hunan Provincial Natural Science Foundation of China(Nos.2021JJ40542 and 2023JJ30596)the science and technology innovation Program of Hunan Province(No.2023RC3133)。
文摘The identification of indoor harmful gases is imperative due to their significant threats to human health and safety.To achieve accurate identification,an effective strategy of constructing a sensor array combined with the pattern recognition algorithm is employed.Carbon-based thin-film transistors are selected as the sensor array unit,with semiconductor carbon nanotubes(CNTs)within the TFT channels modified with different metals(Au,Cu and Ti)for selective responses to NH_(3),H_(2)S and HCHO,respectively.For accurate gas species identification,an identification mode that combines linear discriminant analysis algorithms and logistic regression classifier is developed.The test results demonstrate that by preprocessing the sensor array’s sensing data with the LDA algorithm and subsequently employing the LR classifier for identification,a 100%recognition rate can be achieved for three target gases(NH3,H2S and HCHO).This work provides significant guidance for future applications of chip-level gas sensors in the realms of the Internet of Things and Artificial Intelligence.
基金National Natural Science Foundation of China (52162028)Natural Science Foundation of Jiangxi Province (20232ACB204011,20224BAB204001)+3 种基金Education Department of Jiangxi Province (GJJ2201001)Jingdezhen Municipal Science and Technology Bureau (2023GY001-16,2023ZDGG001 and 20224SF005-08)Opening Project of National Engineering Research Center for Domestic&Building Ceramics (GCZX2301)State Key Laboratory of New Ceramics and Fine Processing in Tsinghua University (KF202309,KF202414)。
文摘Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.
基金This work was supported by the National Natural Science Foundation of China(No.51572157,No.21902085,and No.51702188)the Natural Science Foundation of Shandong Province(No.ZR2019QF012,No.ZR2019BEM024,ZR2016BM16)+3 种基金the Fundamental Research Funds of Shandong University(2018JC036,2018JC046,2018JC047)Qilu Young Scholar Program of Shandong(No.31370088963043)the Young Scholars Program of Shandong University(2018WLJH25)Key Technology Research and Development Program of Shandong(2019JZZY010312).
文摘To tackle the aggravating electromagnetic wave(EMW)pollution issues,high-efficiency EMW absorption materials are urgently explored.Metal-organic framework(MOF)derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures,which is expected to satisfy diverse application requirements.The extensive developments on MOF derivatives demonstrate its significantly important role in this research area.Particularly,MOF derivatives deliver huge performance superiorities in light weight,broad bandwidth,and robust loss capacity,which are attributed to the outstanding impedance matching,multiple attenuation mechanisms,and destructive interference effect.Herein,we summarized the relevant theories and evaluation methods,and categorized the state-of-the-art research progresses on MOF derivatives in EMW absorption field.In spite of lots of challenges to face,MOF derivatives have illuminated infinite potentials for further development as EMW absorption materials.
基金supported by the National Program for Support of Top-notch Young Professionals and the Australian Government through the Australian Renewable Energy Agency(ARENA)
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.
基金supported by National Key R&D Program of China(2016YFB0901600)the National Natural Science Foundation of China(51772313 , U1830113 and 51802334)
文摘Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.
基金supported by the financial support from Natural Science Foundation of China(21776053 and 21676065)。
文摘Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
基金Project(738010004)supported by the Project of Low Concentration Sulfur Dioxide Flue Gas Treatment,ChinaProject(2017GK4010)supported by the Scientific and Technological Breakthrough and Major Achievements Transformation of Strategic Emerging Industries of Hunan Province in 2017,China
文摘Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role.
文摘The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.
基金The author sincerely thanks the financial supports from the National Natural Science Foundation of China(Grant Nos.51871188,51701169,and 51931006)National Key R&D Program of China(Grant No.2016YFA0202602)+1 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2019J06003)the“Double‐First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University.
文摘With its high theoretical capacity,lithium(Li)metal is recognized as the most potential anode for realizing a high-performance energy storage system.A series of questions(severe safety hazard,low Coulombic efficiency,short lifetime,etc.)induced by uncontrollable dendrites growth,unstable solid electrolyte interface layer,and large volume change,make practical application of Li-metal anodes still a threshold.Due to their highly appealing properties,carbon-based materials as hosts to composite with Li metal have been passionately investigated for improving the performance of Li-metal batteries.This review displays an overview of the critical role of carbon-based hosts for improving the comprehensive performance of Li-metal anodes.Based on correlated mainstream models,the main failure mechanism of Li-metal anodes is introduced.The advantages and strategies of carbon-based hosts to address the corresponding challenges are generalized.The unique function,existing limitation,and recent research progress of key carbon-based host materials for Li-metal anodes are reviewed.Finally,a conclusion and an outlook for future research of carbon-based hosts are presented.This review is dedicated to summarizing the advances of carbon-based materials hosts in recent years and providing a reference for the further development of carbonbased hosts for advanced Li-metal anodes.
基金supported by National Natural Science Foundation of China(Grant Nos.11274308 and 21401202)
文摘By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.