期刊文献+
共找到1,706篇文章
< 1 2 86 >
每页显示 20 50 100
Effects of Cure Pressure Induced Voids on the Mechanical Strength of Carbon/Epoxy Laminates 被引量:1
1
作者 Ling LIU, Boming ZHANG, Zhanjun WU and Dianfu WANGCenter for Composite Materials, Harbin Institute of Technology, Harbin 150001, ChinaProf., 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期87-91,共5页
This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength o... This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength of carbon/epoxy laminates have been examined. Characterization of the voids, in terms of void volume fraction, void distribution, size, and shape, was performed by standard test, ultrasonic inspection and metallographic analysis. The interlaminar shear strength was measured by the short-beam method. An empirical model was used to predict the strength vs porosity. The predicted strengths conform well with the experimental data and voids were found to be uniformly distributed throughout the laminate. 展开更多
关键词 carbon/epoxy laminates Autoclave curing VOID Mechanical strength
在线阅读 下载PDF
Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh 被引量:8
2
作者 F.S.Wang Y.Zhang +2 位作者 X.T.Ma Z.Wei J.F.Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2693-2704,共12页
Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.... Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.Effectiveness of numerical method was verified and impulse current waveforms with different current peaks were applied according to aircraft lightning zones.Thermal-electrical material parameters varying with temperature were added into numerical models.Element deletion method was used to deal with lightning ablation elements of composite structures.The results show that ablation area and depth of composite laminates with metal mesh protection are significantly smaller,which proves good protection effectiveness of metal meshes on anti-lightning strike.The denser the mesh spacing,the better the anti-lightning strike will be.Protection of composite laminates with copper mesh has better effects than that of aluminum mesh.Considering the effect of mesh spacing variation on composite structural weight and anti-lightning strike,the ideal mesh spacing was obtained. 展开更多
关键词 Lightning strike carbon/epoxy composites Ablation Mesh protection
原文传递
Low-Velocity Impact and Compression after Impact(CAI)Behaviors of Carbon-Aramid/Epoxy Hybrid Braided Composite Laminates
3
作者 CAO Hongxue SUN Ying +2 位作者 TANG Mengyun DING Xu CHEN Li 《Journal of Donghua University(English Edition)》 EI CAS 2020年第1期17-27,共11页
Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-ar... Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-aramid/epoxy hybrid braided composite laminates were produced and tested:(a)inter-hybrid laminates,(b)sandwich-like inter-hybrid laminates,and(c)unsymmetric-hybrid laminates.At the same time,carbon/epoxy braided composite laminates were used for comparisons.Impact properties and impact resistance were studied.Internal damages and damage mechanisms of laminates were detected by ultrasonic C-scan and B-scan methods.The results show that the ductility index(DI)values of three kinds of hybrid laminates aforementioned are 37%,4%and 120%higher than those of carbon/epoxy laminates,respectively.The peak load of inter-hybrid laminates is higher than that of sandwich-like inter-hybrid laminates and unsymmetric-hybrid laminates.The average damage area and dent depths of inter-hybrid laminates are 64%and 69%smaller than those of carbon/epoxy laminates.Those results show that carbon-aramid/epoxy hybrid braided composite laminates could significantly improve the impact properties and toughness of non-hybrid braided composite laminates. 展开更多
关键词 COMPOSITE braided COMPOSITE carbon/epoxy carbon-aramid/epoxy hybrid laminated COMPOSITE low-velocity IMPACT in-plane axial compression compression after impact(CAI)
在线阅读 下载PDF
Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates 被引量:11
4
作者 S.H. Song Y.S. Byun +3 位作者 T.W. Ku W.J. Song J. Kim B.S. Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第4期327-332,共6页
It is known that fiber metal laminates (FML) as one of hybrid materials with thin metal sheets and fiber/epoxy layers have the characteristics of the excellent damage tolerance, fatigue and impact properties with a ... It is known that fiber metal laminates (FML) as one of hybrid materials with thin metal sheets and fiber/epoxy layers have the characteristics of the excellent damage tolerance, fatigue and impact properties with a relatively low density. Therefore, the mechanical components using FML can contribute the enhanced safety level of the sound construction toward the whole body. In this study, the impact performance of carbon reinforced aluminum laminates (CARAL) is investigated by experiments and numerical simulations. Drop weight tests are carried out with the weight of 4.7 kg at the speed of 1 and 2 m/s, respectively. Dynamic non-linear transient analyses are also accomplished using a finite element analysis software, ABAQUS. The experiment results and numerical results are compared with impact load-time histories. Also, energy-time histories are applied to investigate the impact performance of CARAL. 展开更多
关键词 Fiber metal laminates (FML) carbon reinforced aluminum laminates (CARAL) Numerical simulation Impact performance
原文传递
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather 被引量:1
5
作者 Zerun Yu Jiaan Liu +2 位作者 Tian Yang Linyang Zhang Chunhua Hu 《Journal of Bionic Engineering》 2025年第1期282-292,共11页
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn... Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction. 展开更多
关键词 carbon fiber reinforced epoxy composites Owl feather Bionic feather structure Mechanical properties
在线阅读 下载PDF
Recycling glass fiber-reinforced epoxy resin waste via electroless plating magnetic particles and carbonizing for microwave absorption
6
作者 Jiang-Tao Liu Yu-Chen Zheng +4 位作者 Xin Hou Xue-Rong Feng Ke Jiang Shan Huang Ming Wang 《Journal of Materials Science & Technology》 2025年第21期328-337,共10页
Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recy... Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process,to design high-value-added carbon materials for microwave absorption.By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface,a composite carbon material capable of excellent microwave absorption performance was successfully developed.Specifically,doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth(EAB)of 5.9 GHz with a matching thickness of 1.9 mm,covering nearly the entire Ku band,and achieving a minimum reflection loss(RLmin)of−36 dB simultaneously.The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material,as well as conduction and magnetic losses,dipole and interfacial polarization effects.These results demonstrate that through rational design and optimization,waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials,offering a straightforward and efficient pathway for waste resource utilization. 展开更多
关键词 epoxy resin carbonIZATION Microwave absorption Plastic waste recycling
原文传递
Vertically aligned cellulose nanofiber/carbon nanotube aerogel-infused epoxy nanocomposites for highly efficient solar-thermal-electric conversion
7
作者 Jiali Yan Yu Sun +4 位作者 Tao Jia Bin Tao Min Hong Pingan Song Miaojun Xu 《Journal of Materials Science & Technology》 2025年第11期313-321,共9页
Solar-driven thermo-electric generation(STEG)emerges as a promising solution to mitigate the global en-ergy shortage.However,the practical application of conventional photothermal materials equipped with STEG is limit... Solar-driven thermo-electric generation(STEG)emerges as a promising solution to mitigate the global en-ergy shortage.However,the practical application of conventional photothermal materials equipped with STEG is limited due to low solar thermal conversion efficiency.Herein,we fabricated an epoxy resin(EP)nanocomposite,EP/CCA80,with excellent photo-thermal-electric conversion properties by embedding a vertically aligned aerogel consisting of cellulose nanofibers(CNF)and carboxylated multi-walled carbon nanotubes(CMWCNTs)into a transparent EP matrix.EP/CCA80 composites possessed a broad light ab-sorption range from 200 nm to 2500 nm and excellent photothermal properties.Under illumination of 1.0 kW m^(-2),EP/CCA80 achieved a notable stable temperature of 93.2℃ and a photothermal conversion efficiency of up to 54.35%with only 0.65 wt%CMWCNTs inclusion.Additionally,coupled with thermo-electric(TE)devices,the EP/CCA80 composite facilitated a significant temperature difference and voltage output of up to 25.3℃ and 160.29 mV(1.0 kW m^(-2)),respectively,which could power a small fan to rotate at a speed of 193 min^(-1).Such materials are poised to offer viable solutions for enhancing energy accessibility in remote regions,thereby contributing to the reduction of energy shortages and environ-mental degradation. 展开更多
关键词 Solar-thermal-electric conversion Photothermal performance epoxy resin Cellulose nanofibers Carboxylated multi-walled carbon nanotubes
原文传递
CONSTITUTIVE MODEL AND DYNAMIC MECHANICAL PROPERTIES OF GLASS-CLOTH/EPOXY LAMINATES AT DIFFERENT TEMPERATURES
8
作者 韩小平 韩省亮 +2 位作者 李华 殷民 郑长卿 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第2期9-12,共4页
CONSTITUTIVEMODELANDDYNAMICMECHANICALPROPERTIESOFGLASS┐CLOTH/EPOXYLAMINATESATDIFFERENTTEMPERATURESHANXiaopin... CONSTITUTIVEMODELANDDYNAMICMECHANICALPROPERTIESOFGLASS┐CLOTH/EPOXYLAMINATESATDIFFERENTTEMPERATURESHANXiaoping(韩小平)1,HANShenli... 展开更多
关键词 glass cloth/epoxy laminates strain rate temperature effects constitutive equations
在线阅读 下载PDF
Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions
9
作者 祝国梁 肖艳萍 +3 位作者 杨永祥 王俊 孙宝德 BOOM Rob 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第3期257-262,共6页
GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A38... GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time. 展开更多
关键词 fibre metal laminates GLARE (glass fibre/epoxy reinforced aluminum laminate) RECYCLING decomposition kinetics thermal degradation
原文传递
Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates
10
作者 牛鹏志 《Journal of Chongqing University》 CAS 2007年第1期67-72,共6页
Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper prese... Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural ngidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from .5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue "cycles to the fatigue life is within 0.0.5 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments. 展开更多
关键词 flexural rigidity carbon fiber laminate reinforced concrete BEAM FATIGUE
在线阅读 下载PDF
Analysis of vibration attenuation characteristics of large thickness carbon fiber composite laminates
11
作者 Yi-Qi WANG Chaoqun WANG +2 位作者 Pengxiao YANG Ziao WANG Tete CAO 《Mechanical Engineering Science》 2022年第1期22-26,共5页
The vibration attenuation and damping characteristics of carbon fiber reinforced composite laminates with different thicknesses were investigated by hammering experiments under free boundary constraints in different d... The vibration attenuation and damping characteristics of carbon fiber reinforced composite laminates with different thicknesses were investigated by hammering experiments under free boundary constraints in different directions.The dynamic signal testing and analysis system is applied to collect and analyze the vibration signals of the composite specimens,and combine the self-spectrum analysis and logarithmic decay method to identify the fundamental frequencies of different specimens and calculate the damping ratios of different directions of the specimens.The results showed that the overall stiffness of the specimen increased with the increase of the specimen thickness,and when the thickness of the sample increases from 24mm to 32mm,the fundamental frequency increases by 35.1%,the vibration showed the same vibration attenuation and energy dissipation characteristics in the 0°and 90°directions of the specimen,compared with the specimen in the 45°direction,which was less likely to be excited and had poorer vibration attenuation ability,while the upper and lower surfaces of the same specimen showed slightly different attenuation characteristics to the vibration,the maximum difference of damping capacity between top and bottom surfaces of CFRP plates is about 70%. 展开更多
关键词 carbon fiber composite laminates Logarithmic decay method Damping ratio Natural frequency
在线阅读 下载PDF
Carbon-Epoxy圆管件的静态吸能特征 被引量:12
12
作者 陈永刚 益小苏 +2 位作者 许亚洪 唐邦铭 张子龙 《航空学报》 EI CAS CSCD 北大核心 2005年第2期246-249,共4页
Carbon/Epoxy 复合材料可以用作理想的吸能材料。为了考察材料体系对结构吸能性能的影响,对一系列Carbon/Epoxy圆管件进行了静态吸能性能试验。试验结果表明,在基体种类相同的条件下,结构的压溃失效模式有很大的区别。材料的吸能性能不... Carbon/Epoxy 复合材料可以用作理想的吸能材料。为了考察材料体系对结构吸能性能的影响,对一系列Carbon/Epoxy圆管件进行了静态吸能性能试验。试验结果表明,在基体种类相同的条件下,结构的压溃失效模式有很大的区别。材料的吸能性能不仅同材料性能关系密切,而且也受材料纤维方式影响。 展开更多
关键词 carbon/epoxy复合材料 管形件 吸能 比吸能率
在线阅读 下载PDF
Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers 被引量:14
13
作者 Xuetao Shi Ruihan Zhang +3 位作者 Kunpeng Ruan Tengbo Ma Yongqiang Guo Junwei Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第23期239-249,共11页
Hetero-structured thermally conductive spherical boron nitride and boron nitride nanosheets(BNN-30@BNNS)fillers were prepared via electro static self-assembly method.And the corresponding thermally conductive&elec... Hetero-structured thermally conductive spherical boron nitride and boron nitride nanosheets(BNN-30@BNNS)fillers were prepared via electro static self-assembly method.And the corresponding thermally conductive&electrically insulating BNN-30@BNNS/Si-GFs/E-44 laminated composites were then fabricated via hot compression.BNN-30@BNNS-Ⅲ(fBNN-30/fBNNS,1/2,wt/wt)fillers presented the optimal synergistic improvement effects on the thermal conductivities of epoxy composites.When the mass fraction of BNN-30@BNNS-Ⅲwas 15 wt%,λvalue of the BNN-30@BNNS-Ⅲ/E-44 composites was up to0.61 W m^(-1)K^(-1),increased by 2.8 times compared with pure E-44(λ=0.22 W m^(-1)K^(-1)),also higher than that of the 15 wt%BNN-30/E-44(0.56 W m^(-1)K^(-1)),15 wt%BNNS/E-44(0.42 W m^(-1)K^(-1)),and 15 wt%(BNN-30/BNNS)/E-44(direct blending BNN-30/BNNS hybrid fillers,1/2,wt/wt,0.49 W m^(-1)K^(-1))composites.Theλin-plane(λ//)andλcross-plane(λ_(⊥))of 15 wt%BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites significantly reached 2.75 W m^(-1)K^(-1)and 1.32 W m^(-1)K^(-1),186.5%and 187.0%higher than those of Si-GFs/E-44 laminated composites(λ//=0.96 W m^(-1)K^(-1)andλ_(⊥)=0.46 W m^(-1)K^(-1)).Established models can well simulate heat transfer efficiency in the BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites.Under the condition of point heat source,the introduction of BNN-30@BNNS-Ⅲfillers were conducive to accelerating heat flow trans fe r.BNN-30@BNNS-Ⅲ/Si-GFs/E-44 laminated composites also demonstrated outstanding electrical insulating properties(cross-plane withstanding voltage,breakdown strength,surface&volume resistivity of 51.3 kV,23.8 kV mm^(-1),3.7×10^(14)Ω&3.4×10^(14)Ω·cm,favorable mechanical properties(flexural strength of 401.0 MPa and ILSS of 22.3 MPa),excellent dielectric properties(εof 4.92 and tanδof 0.008)and terrific thermal properties(T_(g)of 167.3℃and T_(HRI)of 199.2℃). 展开更多
关键词 epoxy resins Thermally conductive laminated composites Glass fabrics Hetero-structured fillers
原文传递
Carbon Fibers Decorated by Polyelectrolyte Complexes toward Their Epoxy Resin Composites with High Fire Safety 被引量:10
14
作者 Xiao-Hui Shi Li Chen +3 位作者 Bo-Wen Liu Jia-Wei Long Ying-Jun Xu Yu-Zhong Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第12期1375-1384,共10页
The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber(CF)composites.To this end,a facile interracial strategy for fabricating flame-retardant carbon fibers decor... The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber(CF)composites.To this end,a facile interracial strategy for fabricating flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes(PEC)consisting of chitosan(CH)and ammonium polyphosphate(APP)was developed,and its corresponding fire-retarded epoxy resin composites(EP/(PEC@CF))without any other additional flame retardants were prepared.The decorated CFs were characterized by SEM-EDX,XPS and XRD,indicating that the flame-retardant PEC coating was successfully constructed on the surface of CF.Thanks to the nitrogen-and phosphorous-containing PEC,the resulting composites exhibited excellent flame retardancy as the limiting oxygen index(LOI)increased from 31.0%of EP/CF to 40.5%and UL-94 V-0 rating was achieved with only 8.1 wt%PEC.EP/(PEC8.1@CF)also performed well in cone calorimetry with the decrease of peak-heat release rate(PHRR)and smoke production rate(SPR)by 50.0%and 30.4%,respectively,and the value of fire growth rate(FIGRA)was also reduced to 3.41 kW·m-2-s-1 from 4.84 kW·m-2·s-1,suggesting a considerably enhanced fire safety.Furthermore,SEM images of the burning residues revealed that the PEC coating exhibited the dominant flame-retardant activity in condensed phase via the formation of compact phosphorus-rich char.In addition,the impact strength of the composite was improved,together with no obvious deterioration of flexural properties and glass transition temperature.Taking advantage of the features,the PEC-decorated carbon fibers and the relevant composites fabricated by the cost-effective and facile strategy would bring more chances for widespread applications. 展开更多
关键词 Fire safety carbon fiber composites epoxy resin Polyelectrolyte complexes
原文传递
Oligoaniline Assisted Dispersion of Carbon Nanotubes in Epoxy Matrixfor Achieving the Nanocomposites with Enhanced Mechanical, Thermaland Tribological Properties 被引量:2
15
作者 Bin Chen Jia Chen +3 位作者 Jing-yu Li Xin Tong 赵海超 王立平 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第3期446-454,共9页
A critical challenge for initiating many applications of the carbon nanotubes(CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon... A critical challenge for initiating many applications of the carbon nanotubes(CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon nanotubes(CNTs)-reinforced epoxy nanocomposite by utilizing aniline trimer(AT) as the noncovalent dispersant. Tensile testing showed that the tensile modulus of the CNTs-reinforced epoxy composites was considerably improved by adding a small amount of AT functionalized CNTs. Additionally, the as-prepared CNTs-epoxy nanocomposites exhibited superior tribological properties with much lower frictional coefficients and wear rates compared to those of neat epoxy resin. The well dispersed AT-functionalized CNTs in epoxy matrix played an important role in enhancing the mechanical properties, as well as acting as a solid lubricant for improving the tribological performance of epoxy/CNTs nanocomposite. 展开更多
关键词 carbon nanotubes epoxy MECHANICAL TRIBOLOGICAL NANOCOMPOSITES
原文传递
An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin 被引量:2
16
作者 Qi Wang Wen Shi +1 位作者 Bo Zhu Dang Sheng Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期24-30,共7页
Facile green oxidation methods are always desired to functionalize carbon nanotubes(CNTs)in the production of advanced CNT/epoxy composites.In the present work,an optimized H2O2/H2O/O3 oxidation method was developed,a... Facile green oxidation methods are always desired to functionalize carbon nanotubes(CNTs)in the production of advanced CNT/epoxy composites.In the present work,an optimized H2O2/H2O/O3 oxidation method was developed,and performances of the H2O2/H2O/O3 oxidized CNT in epoxy matrix were tested and compared with that of the H2O/O3 oxidized CNT and the most commonly used concentrated HNO3 oxidized CNT.The physical and chemical characteristics of the obtained oxidized CNTs were systematically characterized via transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS)and Raman.Mechanical performances of the obtained composites were explored by tensile tests,impact tests,dynamic mechanical analysis(DMA)and fracture toughness tests.It was found that the H2O2/H2O/O3 oxidized CNT exhibited all-around overwhelming advantages over the concentrated HNO3 oxidized CNT on reinforcing the epoxy matrix,while the H2O/O3 oxidized CNT only improved the material strength.Reinforcing mechanisms for the different methods oxidized CNTs were studied and compared.The optimized H2O2/H2O/O3 oxidation method makes scaled production possible,avoids environment pollutions,and holds great potentials to replace the most commonly used concentrated HNO3 oxidation method to oxidize CNT during the preparation of the advanced CNT/epoxy composite. 展开更多
关键词 Green oxidation method carbon NANOTUBE epoxy composite Mechanical properties Interfacial interaction
原文传递
Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices 被引量:2
17
作者 Gao Aijun Gu Yizhuo +3 位作者 Wu Qing Yuan Chao Li Min Zhang Zuoguang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1255-1262,共8页
This paper aims to study the effect of processing temperature on interfacial behavior of HKT800 carbon fiber composites with epoxy and Bismaleimide(BMI) matrix.Referring to the processing conditions of the composite... This paper aims to study the effect of processing temperature on interfacial behavior of HKT800 carbon fiber composites with epoxy and Bismaleimide(BMI) matrix.Referring to the processing conditions of the composite, various processing-heat treatments were conducted on HKT800 and the extracted sizing content declines with increasing temperature.Chemical analysis shows that the HKT800 sizing is epoxy-type and reactive at 200 C.The interfacial shear strength(IFSS) of HKT800/epoxy and HKT800/BMI was investigated by micro-droplet method, for which the composites were fabricated with modeling temperature schemes referring to different diffusion, cure and post-cure stages.It shows that diffusion temperature and conversion degree of the resin both enhance the interfacial adhesion of HKT800/epoxy composite.For the HKT800/BMI composite,the diffusion temperature shows a insignificant effect on the IFSS.FTIR analysis indicates that sufficient reactions are achieved between HKT800-sizing and epoxy resin, however only partial reactions are observed between the sizing and BMI.Moreover, the presence of the sizing can evidently improve the wettability of HKT800 with epoxy resin but is unfavorable for HKT800 with BMI. 展开更多
关键词 BISMALEIMIDE carbon fiber epoxy Interfacial shear strength Temperature scheme
原文传递
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
18
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
在线阅读 下载PDF
Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate 被引量:5
19
作者 WU Xin-tong ZHAN Li-hua +3 位作者 HUANG Ming-hui ZHAO Xing WANG Xun ZHAO Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期657-668,共12页
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ... Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components. 展开更多
关键词 carbon fiber reinforced aluminum laminate galvanic corrosion ELECTROCHEMISTRY interlaminar shear strength aluminum alloy
在线阅读 下载PDF
Improvement of the Compressive Strength of Carbon Fiber/Epoxy Composites via Microwave Curing 被引量:7
20
作者 Xuehong Xu Xiaoqun Wang +3 位作者 Qun Cai Xu Wang Ran Wei Shanyi Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期226-232,共7页
Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were... Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were fabricated under one atmosphere pressure without arcing. The physical and mechanical properties of composites produced through vacuum bagging using microwave and thermal curing were compared and the multistep (2-step or 3-step) microwave curing process for improved compressive properties was established. The results indicated that microwave cured samples had somewhat differentiated molecular structure and showed slightly higher glass transition temperature. The 2-step process was found to be more conducive to the enhancement of the compressive strength than the 3-step process. A 39% cure cycle time reduction and a 22% compressive strength increment were achieved for the composites manufactured with microwave radiation. The improvement in specific compressive strength was attributed to better interracial bonding between resin matrix and the fibers, which was also demonstrated via scanning electron microscopy analysis. 展开更多
关键词 carbon fiber epoxy Microwave curing Compressive properties
原文传递
上一页 1 2 86 下一页 到第
使用帮助 返回顶部