Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected....Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.Effectiveness of numerical method was verified and impulse current waveforms with different current peaks were applied according to aircraft lightning zones.Thermal-electrical material parameters varying with temperature were added into numerical models.Element deletion method was used to deal with lightning ablation elements of composite structures.The results show that ablation area and depth of composite laminates with metal mesh protection are significantly smaller,which proves good protection effectiveness of metal meshes on anti-lightning strike.The denser the mesh spacing,the better the anti-lightning strike will be.Protection of composite laminates with copper mesh has better effects than that of aluminum mesh.Considering the effect of mesh spacing variation on composite structural weight and anti-lightning strike,the ideal mesh spacing was obtained.展开更多
This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength o...This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength of carbon/epoxy laminates have been examined. Characterization of the voids, in terms of void volume fraction, void distribution, size, and shape, was performed by standard test, ultrasonic inspection and metallographic analysis. The interlaminar shear strength was measured by the short-beam method. An empirical model was used to predict the strength vs porosity. The predicted strengths conform well with the experimental data and voids were found to be uniformly distributed throughout the laminate.展开更多
The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The lamina...The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The laminates were made from eight-layered carbon (in woven mat form) with epoxy as the binding medium by hand lay-up technique and cured at a pressure of 100 kg/cm2 under room temperature using a 30 ton capacity compression molding machine for 24 h. 21 tensile specimens (ASTM D3039 standard) were cut from the cross ply laminates. 16 specimens were subjected to impact load from three different heights using a Fractovis Plus drop impact tester. Both impacted and non-impacted specimens were subjected to uniaxial tension under the acoustic emission monitoring using a 100 kN FIE servo hydraulic universal testing machine. The dominant AE parameters such as counts, energy, duration, rise time and amplitude are recorded during monitoring. Cumulative counts corresponding to the amplitude ranges obtained during the tensile testing are used to train the network. This network can be used to predict the failure load of a similar specimen subjected to uniaxial tension under acoustic emission monitoring for certain percentage of the average failure load.展开更多
Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliabil...Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliability of the self-sensing, electrical contact between the lead wire and the carbon fibers is the most important issue. The present study focuses on the effect of the cyclic loading of lower applied strain range than the fatigue damage level. As a result, the electrical contact resistance at the copper electrode increased with the increase of cycles. That means that the electrical change at the electrodes must be considered for the long-term self-sensing monitoring system. When a four-probe method is used to measure the electrical resistance, the contact resistance effect is minimized. Moreover, angle-ply laminates have plastic deformation caused by shear loading, and that causes electrical resistance decrease during the cyclic loading. Cross-ply laminates of CFRP composites have no electrical resistance increase without damage. Quasi-isotropic laminates of CFRP composites, however, have electrical resistance decrease with the increase of the number of cycles because of the plastic deformation of the angle-ply laminates.展开更多
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t...This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.展开更多
The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Speci...The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.展开更多
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn...Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.展开更多
Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recy...Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process,to design high-value-added carbon materials for microwave absorption.By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface,a composite carbon material capable of excellent microwave absorption performance was successfully developed.Specifically,doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth(EAB)of 5.9 GHz with a matching thickness of 1.9 mm,covering nearly the entire Ku band,and achieving a minimum reflection loss(RLmin)of−36 dB simultaneously.The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material,as well as conduction and magnetic losses,dipole and interfacial polarization effects.These results demonstrate that through rational design and optimization,waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials,offering a straightforward and efficient pathway for waste resource utilization.展开更多
Solar-driven thermo-electric generation(STEG)emerges as a promising solution to mitigate the global en-ergy shortage.However,the practical application of conventional photothermal materials equipped with STEG is limit...Solar-driven thermo-electric generation(STEG)emerges as a promising solution to mitigate the global en-ergy shortage.However,the practical application of conventional photothermal materials equipped with STEG is limited due to low solar thermal conversion efficiency.Herein,we fabricated an epoxy resin(EP)nanocomposite,EP/CCA80,with excellent photo-thermal-electric conversion properties by embedding a vertically aligned aerogel consisting of cellulose nanofibers(CNF)and carboxylated multi-walled carbon nanotubes(CMWCNTs)into a transparent EP matrix.EP/CCA80 composites possessed a broad light ab-sorption range from 200 nm to 2500 nm and excellent photothermal properties.Under illumination of 1.0 kW m^(-2),EP/CCA80 achieved a notable stable temperature of 93.2℃ and a photothermal conversion efficiency of up to 54.35%with only 0.65 wt%CMWCNTs inclusion.Additionally,coupled with thermo-electric(TE)devices,the EP/CCA80 composite facilitated a significant temperature difference and voltage output of up to 25.3℃ and 160.29 mV(1.0 kW m^(-2)),respectively,which could power a small fan to rotate at a speed of 193 min^(-1).Such materials are poised to offer viable solutions for enhancing energy accessibility in remote regions,thereby contributing to the reduction of energy shortages and environ-mental degradation.展开更多
The present levels of CO_(2)emission in the atmosphere require the development of technologies to achieve carbon neutrality using inexpensive processes.Conversion of CO_(2)into cyclic carbonates is one of the solution...The present levels of CO_(2)emission in the atmosphere require the development of technologies to achieve carbon neutrality using inexpensive processes.Conversion of CO_(2)into cyclic carbonates is one of the solutions to this problem.Here,we synthesized a ZnV_(2)O_(6)/Bi_(2)WO_(6)nanocomposite and catalyzed the cycloaddition of CO_(2)to epoxides for the green synthesis of cyclic carbonates under visible light irradiation.The present nanocomposite photocatalyst exhibited up to 96%yield of cyclic carbonates.The photocatalyst was found to be efficient for photocatalytic cycloaddition reactions,and the recovered photocatalyst showed stability in up to five consecutive photocatalytic experiments.The current methodology of cyclic carbonate production is a significant step toward the mitigation of atmospheric CO_(2)and can work well with the development of nanocomposite photocatalysts.展开更多
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i...The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.展开更多
Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in mariti...Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in maritime shipping using the levelized cost of energy methodology.It includes a detailed comparative analysis based on essential criteria and sensitivity assessments to highlight the economic impacts of technological advancements.Key factors influencing total costs include fuel costs,carbon pricing,and energy demands for carbon capture.The findings reveal that methanol is more cost-effective than heavy fuel oil(HFO)when priced below 3000 CNY/t,assuming HFO costs 4400 CNY/t.Additionally,methanol with post-combustion carbon capture is less expensive than pre-combustion carbon capture.When carbon prices rise above 480 CNY/t,carbon capture technologies prove more economical than purchasing carbon emission allowances for HFO and liquefied natural gas.Enhanc-ing the use of exhaust gas waste heat is recommended for cost savings.Post-combustion carbon capture also shows greater efficiency,requiring about 1.1 GJ/t less energy than pre-combustion methods,leading to lower overall costs.Future research should focus on market mechanisms to stabilize fuel prices and develop less energy-intensive carbon capture technologies.This study offers critical insights into effective decarbonization strategies for advancing global maritime trade in the present and future.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspher...Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.展开更多
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in ...Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.展开更多
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje...To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.展开更多
Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-...Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.展开更多
基金supported financially by the National Natural Science Foundation of China (No.51875463)the Natural Science Basic Research Plan in Shaanxi Province of China (No.2018JM1001)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No.ZZ2018107)
文摘Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.Effectiveness of numerical method was verified and impulse current waveforms with different current peaks were applied according to aircraft lightning zones.Thermal-electrical material parameters varying with temperature were added into numerical models.Element deletion method was used to deal with lightning ablation elements of composite structures.The results show that ablation area and depth of composite laminates with metal mesh protection are significantly smaller,which proves good protection effectiveness of metal meshes on anti-lightning strike.The denser the mesh spacing,the better the anti-lightning strike will be.Protection of composite laminates with copper mesh has better effects than that of aluminum mesh.Considering the effect of mesh spacing variation on composite structural weight and anti-lightning strike,the ideal mesh spacing was obtained.
文摘This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength of carbon/epoxy laminates have been examined. Characterization of the voids, in terms of void volume fraction, void distribution, size, and shape, was performed by standard test, ultrasonic inspection and metallographic analysis. The interlaminar shear strength was measured by the short-beam method. An empirical model was used to predict the strength vs porosity. The predicted strengths conform well with the experimental data and voids were found to be uniformly distributed throughout the laminate.
文摘The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The laminates were made from eight-layered carbon (in woven mat form) with epoxy as the binding medium by hand lay-up technique and cured at a pressure of 100 kg/cm2 under room temperature using a 30 ton capacity compression molding machine for 24 h. 21 tensile specimens (ASTM D3039 standard) were cut from the cross ply laminates. 16 specimens were subjected to impact load from three different heights using a Fractovis Plus drop impact tester. Both impacted and non-impacted specimens were subjected to uniaxial tension under the acoustic emission monitoring using a 100 kN FIE servo hydraulic universal testing machine. The dominant AE parameters such as counts, energy, duration, rise time and amplitude are recorded during monitoring. Cumulative counts corresponding to the amplitude ranges obtained during the tensile testing are used to train the network. This network can be used to predict the failure load of a similar specimen subjected to uniaxial tension under acoustic emission monitoring for certain percentage of the average failure load.
文摘Self-sensing multifunctional composite has sensing function using electrical resistance changes. Carbon Fiber Reinforced Polymer (CFRP) composite is one of the self-sensing multifunctional composites. For the reliability of the self-sensing, electrical contact between the lead wire and the carbon fibers is the most important issue. The present study focuses on the effect of the cyclic loading of lower applied strain range than the fatigue damage level. As a result, the electrical contact resistance at the copper electrode increased with the increase of cycles. That means that the electrical change at the electrodes must be considered for the long-term self-sensing monitoring system. When a four-probe method is used to measure the electrical resistance, the contact resistance effect is minimized. Moreover, angle-ply laminates have plastic deformation caused by shear loading, and that causes electrical resistance decrease during the cyclic loading. Cross-ply laminates of CFRP composites have no electrical resistance increase without damage. Quasi-isotropic laminates of CFRP composites, however, have electrical resistance decrease with the increase of the number of cycles because of the plastic deformation of the angle-ply laminates.
文摘This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.
基金Project supported by Harbin Aircraft Industry Co.,Ltd.,China。
文摘The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.
基金supported by the Science and Technology Development Program of Jilin Province(No.20240101122JC)and(No.20240101143JC)the Key Scientific and Technological Research and Development Projects of Jilin Provincial Science and Technology Department(Grant Number 20230201108GX)。
文摘Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.
基金supported by the National Natural Science Foundation of China(No.52173264)the Natural Science Foundation Project of Chongqing(No.cstc2024ycjh-bgzxm0005)+1 种基金the Fundamental Research Funds for the Central Universities(No.SWU-XDJH202314)The authors thanks Dr.Xi Tang in Southwest University for the technical support in the use of the vector network analyzer.
文摘Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process,to design high-value-added carbon materials for microwave absorption.By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface,a composite carbon material capable of excellent microwave absorption performance was successfully developed.Specifically,doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth(EAB)of 5.9 GHz with a matching thickness of 1.9 mm,covering nearly the entire Ku band,and achieving a minimum reflection loss(RLmin)of−36 dB simultaneously.The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material,as well as conduction and magnetic losses,dipole and interfacial polarization effects.These results demonstrate that through rational design and optimization,waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials,offering a straightforward and efficient pathway for waste resource utilization.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52073043 and 52173069)the Fundamental Research Funds for the Central Universities(Grant No.2572022CG03)+1 种基金the Key Research and Development Projects in Heilongjiang Province(Grant No.GZ20210089)the Australian Research Council(Grant Nos.LP220100278,DP240102628,and DP240102728).
文摘Solar-driven thermo-electric generation(STEG)emerges as a promising solution to mitigate the global en-ergy shortage.However,the practical application of conventional photothermal materials equipped with STEG is limited due to low solar thermal conversion efficiency.Herein,we fabricated an epoxy resin(EP)nanocomposite,EP/CCA80,with excellent photo-thermal-electric conversion properties by embedding a vertically aligned aerogel consisting of cellulose nanofibers(CNF)and carboxylated multi-walled carbon nanotubes(CMWCNTs)into a transparent EP matrix.EP/CCA80 composites possessed a broad light ab-sorption range from 200 nm to 2500 nm and excellent photothermal properties.Under illumination of 1.0 kW m^(-2),EP/CCA80 achieved a notable stable temperature of 93.2℃ and a photothermal conversion efficiency of up to 54.35%with only 0.65 wt%CMWCNTs inclusion.Additionally,coupled with thermo-electric(TE)devices,the EP/CCA80 composite facilitated a significant temperature difference and voltage output of up to 25.3℃ and 160.29 mV(1.0 kW m^(-2)),respectively,which could power a small fan to rotate at a speed of 193 min^(-1).Such materials are poised to offer viable solutions for enhancing energy accessibility in remote regions,thereby contributing to the reduction of energy shortages and environ-mental degradation.
基金sponsored in part by the National Natural Science Foundation of China(No.21477167)the Science and Technology Research Plan Program of Henan Province(Nos.222102320328,232102210075,232102320137)the Key Science Research Program Foundation of High Education Schools of Henan Province(No.23B610010).
文摘The present levels of CO_(2)emission in the atmosphere require the development of technologies to achieve carbon neutrality using inexpensive processes.Conversion of CO_(2)into cyclic carbonates is one of the solutions to this problem.Here,we synthesized a ZnV_(2)O_(6)/Bi_(2)WO_(6)nanocomposite and catalyzed the cycloaddition of CO_(2)to epoxides for the green synthesis of cyclic carbonates under visible light irradiation.The present nanocomposite photocatalyst exhibited up to 96%yield of cyclic carbonates.The photocatalyst was found to be efficient for photocatalytic cycloaddition reactions,and the recovered photocatalyst showed stability in up to five consecutive photocatalytic experiments.The current methodology of cyclic carbonate production is a significant step toward the mitigation of atmospheric CO_(2)and can work well with the development of nanocomposite photocatalysts.
基金Supported by the National Natural Science Foundation of China(22378181).
文摘The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.
基金supported by the National Key R&D Program of China(No.2022YFC3701500)the Key R&D Plan Projects of Zhejiang Province(No.2024SSYS0072)Zhejiang Provincial Natural Science Foundation(No.LDT23E0601).
文摘Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in maritime shipping using the levelized cost of energy methodology.It includes a detailed comparative analysis based on essential criteria and sensitivity assessments to highlight the economic impacts of technological advancements.Key factors influencing total costs include fuel costs,carbon pricing,and energy demands for carbon capture.The findings reveal that methanol is more cost-effective than heavy fuel oil(HFO)when priced below 3000 CNY/t,assuming HFO costs 4400 CNY/t.Additionally,methanol with post-combustion carbon capture is less expensive than pre-combustion carbon capture.When carbon prices rise above 480 CNY/t,carbon capture technologies prove more economical than purchasing carbon emission allowances for HFO and liquefied natural gas.Enhanc-ing the use of exhaust gas waste heat is recommended for cost savings.Post-combustion carbon capture also shows greater efficiency,requiring about 1.1 GJ/t less energy than pre-combustion methods,leading to lower overall costs.Future research should focus on market mechanisms to stabilize fuel prices and develop less energy-intensive carbon capture technologies.This study offers critical insights into effective decarbonization strategies for advancing global maritime trade in the present and future.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supported by the National Key R&D Program of China(No.2021YFB3501102).
文摘Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金supported by the National Key R&D Program of China(2022YFB3803700)National Natural Science Foundation of China(52171186)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)support from“Zhiyuan Honor Program”for doctoral students,Shanghai Jiao Tong University.
文摘Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.
基金Supported by State Grid Corporation of China Science and Technology Project:Research on Key Technologies for Intelligent Carbon Metrology in Vehicle-to-Grid Interaction(Project Number:B3018524000Q).
文摘To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.
文摘Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.