期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures 被引量:1
1
作者 P.STEFANOV D.GARLANOV G.VISSOKOV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第4期484-490,共7页
An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc generated by a plasma torch using an inert gas... An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc generated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 10^4 K, while its power density, which is directly transferred onto the electrode (anode), is - 2 kW/mm^2. The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker. 展开更多
关键词 electric-arc plasma installation nanodispersed carbon structures
在线阅读 下载PDF
Effect of hydrothermal treatment on the carbon structure of Inner Mongolia lignite
2
作者 Peng Liu Dexiang Zhang 《International Journal of Coal Science & Technology》 EI 2020年第3期493-503,共11页
Understanding the structural properties of lignite during hydrothermal treatment would aid in predicting the subsequent behavior of coal during the pyrolysis,liquefaction,and gasification processes.Here,hydrothermal t... Understanding the structural properties of lignite during hydrothermal treatment would aid in predicting the subsequent behavior of coal during the pyrolysis,liquefaction,and gasification processes.Here,hydrothermal treatment of Inner Mongolia lignite(IM)was carried out in a lab autoclave.The distribution of carbon in the lignite was monitored via solid 13C nuclear magnetic resonance spectroscopy,and the functional groups of oxygen in lignite were determined by Fourier transform infrared spectroscopy.The curve-fitting method was used to calculate the content of the functional groups quantitatively.The results show that hydrothermal treatment is an effective method for upgrading the lignite.The side chains of the aromatic ring in lignite are altered,while the main macromolecular structure remains nearly the same.The hydrothermal treatment of IM could be divided into three temperature-dependent stages.The first stage(<493 K)is the decomposition reaction of oxygen functional groups,where the O/C ratio decreases from 0.203 in raw IM to 0.185 for the IM treated at 493 K.In the second stage(493–533 K),hydrolysis of functional groups and hydrogen transfer between water and lignite occur.Here,the ratio of methylene to methyl increases from 0.871 in IM-493 to 1.241 for IM-533,and the content of quinone generates from the condensation of free phenol increased.The third stage(>533 K)involves breakage of the covalent bond,and the content of CH4 and CO in the emission gas clearly increase. 展开更多
关键词 LIGNITE Hydrothermal treatment carbon structure Solid 13C nuclear magnetic resonance
在线阅读 下载PDF
Hierarchical nitrogen-doped multichannel carbon nanofibers for efficient potassium–selenium batteries 被引量:1
3
作者 Jae Bong Lim Hyun Jin Kim +3 位作者 Jeong Ho Na Jin Koo Kim Seong-Yong Jeong Seung-Keun Park 《Rare Metals》 2025年第6期3839-3851,共13页
K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require f... K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require further investigation.In this study,novel N-doped multichannel carbon nanofibers(h-NMCNFs)with hierarchical porous structures were successfully synthesized as efficient cathode hosts for K–Se batteries through the carbonization of two electrospun immiscible polymer nanofibers and subsequent chemical activation.Mesopores originated from the decomposition of the polymer embedded in the carbon nanofibers,and micropores were introduced via KOH activation.During the activation step,hierarchical porous carbon nanofibers with enhanced pore volumes were formed because of the micropores in the carbon nanofibers.Owing to the mesopores that enabled easy access to the electrolyte and the high utilization of chain-like Se within the micropores,the Se-loaded hierarchical porous carbon nanofibers(60 wt%Se)exhibited a high discharge capacity and excellent rate performance.The discharge capacity of the nanofibers at the 1,000th cycle was 210.8 mA.h.g^(-1)at a current density of 0.5C.The capacity retention after the initial activation was 64%.In addition,a discharge capacity of 165 mA.h.g^(-1)was obtained at an extremely high current density of 3.0C. 展开更多
关键词 K-Se batteries ELECTROSPINNING Porous carbon structures Hierarchical pore structures Chain-like Semolecules
原文传递
Influence mechanism of Si and Al in ash on microstructure and tensile strength of coke
4
作者 Bo-wen Chen Wei Wang +5 位作者 Wen-kang Lin Xu-heng Chen Ling-kun Chen Da-wei Song Run-sheng Xu Jie Wang 《Journal of Iron and Steel Research International》 2025年第9期2689-2706,共18页
Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on t... Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength. 展开更多
关键词 COKE ASH Tensile strength carbon structure Optical texture Weibull analysis
原文传递
Lignin‐derived carbon with pyridine N‐B doping and a nanosandwich structure for high and stable lithium storage
5
作者 Dichao Wu Jiayuan Li +5 位作者 Yuying Zhao Ao Wang Gaoyue Zhang Jianchun Jiang Mengmeng Fan Kang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期232-247,共16页
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ... Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices. 展开更多
关键词 high cycling stability high energy density lithium‐ion batteries pyridinic N‐B species sandwich structure carbon nanosheet
在线阅读 下载PDF
Reduction of Cr(Ⅵ) with a relative high concentration using different kinds of zero-valent iron powders: Focusing on effect of carbon content and structure on reducibility 被引量:4
6
作者 LV Jin-fang TONG Xiong +2 位作者 ZHENG Yong-xing XIE Xian HUANG Ling-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2119-2130,共12页
Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)... Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction. 展开更多
关键词 relative high concentration Cr(VI) REDUCTION ZVI powder carbon content carbon structure
在线阅读 下载PDF
Establishment of correlation between reaction kinetics and carbon structures in the char gasification process 被引量:1
7
作者 Zefeng Ge Xi Cao +5 位作者 Zhenting Zha Yuna Ma Mingxun Zeng Yuqing Wu Zenghui Hou Huiyan Zhang 《Carbon Resources Conversion》 EI 2023年第2期67-75,共9页
For a gasification process,the char-CO_(2)gasification is the controlling step worthwhile to be deeply investigated.The article chosen corn stalk(CS),poplar sawdust(PS)and bagasse residue(BR)as the typical waste speci... For a gasification process,the char-CO_(2)gasification is the controlling step worthwhile to be deeply investigated.The article chosen corn stalk(CS),poplar sawdust(PS)and bagasse residue(BR)as the typical waste species derived from agricultural,forestal and industrial sources.The char-CO_(2)gasification behavior,reaction kinetics and carbon structure were studied to reveal the intrinsic factors determining the reaction kinetics.Generally,the carbon conversion and maximum conversion rate were influenced by the feedstocks species and char preparation temperatures,as influenced by ash proportion,potassium content in ash and carbon structure of char.The char-CO_(2)reaction for CS was subject more to the catalytic effect of alkali compositions,while pore structure affected more the gasification reaction for PS char.The isoconversional kinetic analysis indicated that the gasification reaction became stable at carbon conversion of 0.5.Subsequently,sectionalized kinetic parameters were calculated for the initial gasification temperature to the temperature reaching 50%conversion.The result showed that high initial gasification temperature increased the char-CO_(2)gasification barrier to hardly start the reaction but accelerate the reaction rate.The carbon structure analyses further clarified that the reaction activation energy was highly related to the microcrystalline structure of carbon,while the reaction rate was more determined by carbon pore structure. 展开更多
关键词 Organic solid wastes Char gasification Activation energy Sectionalized kinetic carbon structure
原文传递
Effect of temperature and stress on molecular structure and carbon monoxide generation of lignite from Kailuan mining area 被引量:2
8
作者 Xiao Cangyan Wei Chongtao +1 位作者 Guo Li Wen Shen Jian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期437-441,共5页
In order to analyze the origin of carbon monoxide(CO) in coal seams, stress–strain experiments under temperature of 50, 150 and 250 °C were conducted using lignite from Kailuan mining area. Fourier transform inf... In order to analyze the origin of carbon monoxide(CO) in coal seams, stress–strain experiments under temperature of 50, 150 and 250 °C were conducted using lignite from Kailuan mining area. Fourier transform infrared spectroscopy and elemental analysis were carried out before and after deformation of the samples. The results indicated that CO generated at 150 and 250 °C; the gas component was mostly oxygen(O_2), with small amount of carbon dioxide(CO_2), methane(CH_4) and hydrogen(H_2). At 50 °C, O_2 and a little CO_2 were observed and no CO was found. The carbon content of the coal samples increased slightly after deformation, and the oxygen content, H/C ratio, and O/C ratio decreased. The molecular structure of coal displayed different evolution characteristics at various temperatures. At 50 and 150 °C, the falling off of side chains, broken of ether bond and directional realignment of the aliphatic chains resulting in the formation of long chains were the main performance of coal molecular structure evolution. While at 250 °C, the side chains fell off and short chains formed. Furthermore, at both 150 and 250 °C, condensed degree of aromatic ring increased. Under the action of temperature and pressure, CO forms in two ways.The first is that ether bond breaks, oxygen and carbon atoms combine together and forms CO, or O_2 forming in the broken of ether–oxygen bond leads to the oxidation of free radicals and resulting in the formation of CO. And the second is that CO derives from falling off of C=O group. 展开更多
关键词 Lignite Molecular structure carbon monoxide generation Deformation Temperature
在线阅读 下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:6
9
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
在线阅读 下载PDF
Composition and Microstructure of Magnetron Sputtering Deposited Ti-containing Amorphous Carbon Films
10
作者 Jun DU Ping ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期571-573,共3页
Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backsca... Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that carbon films contain Ti 18 at pct; after Ti incorporation, the films consist of titanium carbide; C1s peak appears at 283.4 eV and it could be divided into 283.29 and 284.55 eV, representing sp2 and sp3, respectively, and sp2 is superior to sp3. This Ti-containing film with dominating sp2 bonds is nanocomposites with nanocrystalline TiC clusters embedded in an amorphous carbon matrix, which could be proved by XRD and TEM. 展开更多
关键词 Magnetron sputtering deposition carbon film carbon bond structure
在线阅读 下载PDF
Microwave-assisted Hydrothermal Synthesis of Carbon Materials with Tunable Microstructure
11
作者 夏群 JIA Jiajia +2 位作者 赵善宇 ZHU Pinghua 徐海珣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1032-1037,共6页
A facile microwave-assisted hydrothermal route has been developed for a synthesis of versatile carbon materials. The monosaccharide fructose aqueous solution was adopted as the starting material, and the p H of the so... A facile microwave-assisted hydrothermal route has been developed for a synthesis of versatile carbon materials. The monosaccharide fructose aqueous solution was adopted as the starting material, and the p H of the solution was adjusted to be in acidic(pH 4), neutral(pH 7) and basic(pH 10.5) conditions. The p H buffered fructose solutions were treated at different temperatures by a microwave-assisted hydrothermal technique. As-prepared carbon materials displayed p H and temperature dependent multi-morphologies(porous, spherical or core-shell), which were determined by transmission and scanning electron microscopic analyses(TEM and SEM). And the hypothesis of dehydration mechanism of hydrothermal synthesis was analyzed by ultraviolet extinction and Fourier transform infrared spectroscopy. It was found that as compared with normal hydrothermal synthesis, microwave assistance could efficiently increase the production yield and improve the spherical geometry of the carbon particles in neutral condition. By changing the p H of the system, acidic p H induces aggregation of the spheres, while basic p H produces more trends toward core-shell or sponge-like porous structure. The study opens a novel route to the production of polytropic carbon materials and suggests a potential niche market established from the green synthesis. 展开更多
关键词 carbon material hydrothermal microwave tunable structure
原文传递
Influence of Sodium Carbonate Amount on Crystalline Phase and Structure Stability for Doping Nickel Hydroxide
12
作者 赵腾起 朱燕娟 +3 位作者 LI Wenhua FENG Zuyong ZHANG Wei JIAN Xiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期552-558,共7页
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a s... Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2. 展开更多
关键词 sodium carbonate nickel hydroxide crystalline structural stability multiple doping
原文传递
Signal amplificated electrochemical immunosensor for β-lactoglobulin allergen detection in dairy products applying AuNPs/Prussian blue/CMK-8 composite
13
作者 Jingying Yang Lin Li +2 位作者 Xinmiao Ma Shuo Wang Mingfei Pan 《Food Science and Human Wellness》 2025年第8期3249-3257,共9页
Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cu... Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cubic Ia3d structured mesoporous carbon(CMK-8).This immunosensor allowed for the quantitative detection of the major milk allergenβ-LG.CMK-8 with excellent electrical conductivity and uniformly adjustable pore structure was modified on the glassy carbon electrode(GCE)and served as the sensitive substrate for the electro-polymerization of PB,forming the redox-active layer.AuNPs were subsequently electrochemically deposited on PB/CMK-8/GCE to improve the electrical conductivity and utilized as the connector for Abs immobilization.Duringβ-LG detection,the Abs-modified AuNPs/PB/CMK-8/GCE exhibited a significant reduction in differential pulse voltammetry current signal when exposed toβ-LG,displaying an inverse dose-dependent relationship.The developed electrochemical immunosensor demonstrated good detection performance forβ-LG,with a wider linear range of 0.01-100 ng/mL and a lower detection limit of 4.72 pg/mL.Meanwhile,the sensor exhibited remarkable repeatability,reproducibility,stability and anti-interference capabilities,which was further applied to detectβ-LG in dairy food,achieving satisfactory recoveries(89.2%-98.8%)and lower relative standard deviation(£3.1%).Therefore,this innovative electrochemical method for food allergen detection holds great potential application in food safety determination and evaluation. 展开更多
关键词 LABEL-FREE Electrochemical immunosensor Cubic Ia3d structured mesoporous carbon Prussian blue Β-LACTOGLOBULIN
在线阅读 下载PDF
Additivity of pore structural parameters of granular activated carbons derived from different coals and their blends 被引量:7
14
作者 Yao Xin Xie Qiang +3 位作者 Yang Chuan Zhang Bo Wan Chaoran Cui Shanshan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期661-667,共7页
A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET speci... A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one. 展开更多
关键词 Granular activated carbon Coal blend Pore structural parameters Additivity
在线阅读 下载PDF
Anodic Oxidation on Structural Evolution and Tensile Properties of Polyacrylonitrile Based Carbon Fibers with Different Surface Morphology 被引量:5
15
作者 Zhaorui Li Jianbin Wang Yuanjian Tong Lianghua Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1123-1129,共7页
Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface s... Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers. 展开更多
关键词 carbon fibers Anodic oxidation Structural evolution Tensile property Surface morphology
原文传递
Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction 被引量:2
16
作者 Jing-Jing Xu Chun-Hui Xiao Shu-Jiang Ding 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期748-754,共7页
A highly active nitrogen-doped catalyst with a unique red-blood-cell(RBC) like structure is reported for oxygen reduction reaction(ORR).The catalyst Fe,N-C@carbon-900 was prepared by pyrolysis of the polyaniline(... A highly active nitrogen-doped catalyst with a unique red-blood-cell(RBC) like structure is reported for oxygen reduction reaction(ORR).The catalyst Fe,N-C@carbon-900 was prepared by pyrolysis of the polyaniline(PANl) and polystyrene(PS) composites with adsorption of ferric ion on the shell of sphere structure at 900℃.Fe,N-C@carbon-900 with a unique RBC-like structure provides plenty of catalytic sites combining the electrical conductivity of the carbon sphere with the catalytic activity of the nitrogen-doped layer.The four-electron reduction pathway is selected for the catalyst Fe,N-C@carbon-900.The catalyst exhibit the ORR E_(onset) at 0.87 V(potentials is versus to reversible hydrogen electrode(RHE)),E_(1/2) at 0.78 V and high diffusion-limiting current density(5.20mA/cm^2).Furthermore,this work indicates that both N and Fe accounted for high activity of the catalyst Fe,N-C@carbon-900 toward the oxygen reduction process.It is concluded that Fe and N exhibit synergistically promotion in the ORR activity for the catalyst Fe,N-C@carbon-900.We also provide a rational design of electrocatalysts with high ORR activity to further clarify the essential ORR sites of heteroatom doped carbon materials for fuel cells and metal-air battery applications. 展开更多
关键词 Nitrogen-doped carbon Red-blood-cell like structure ORR PANI Electrocatalysts Four-electronpathway
原文传递
Optimal activated carbon for separation of CO_2 from(H_2 + CO_2) gas mixture 被引量:1
17
作者 Xiao-Xin Zhang Peng Xiao +5 位作者 Chang-Yu Sun Gen-Xiang Luo Jia Ju Xiao-Rong wang Hao-Xuan wang Hao Yang 《Petroleum Science》 SCIE CAS CSCD 2018年第3期625-633,共9页
Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The resul... Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 °C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about2.07 lm for 53.6 mol% H2 + 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 + 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process. 展开更多
关键词 structure of activated carbon Characteristic optimization SEPARATION H2 C02 mixtures
原文传递
Trimodel hierarchical yolk-shell porous materials TS-1@mesocarbon:Synthesis and catalytic application 被引量:1
18
作者 Hong-Gen Peng Xiao-Hong Li +1 位作者 Le Xu Peng Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第7期559-562,共4页
Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS- I@MC) was successfully synthesized by using TS-l@mesosilica as hard template, sucrose as carbon source and organ... Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS- I@MC) was successfully synthesized by using TS-l@mesosilica as hard template, sucrose as carbon source and organic base tetrapropylammonium hydroxide (TPAOH) as silica etching agent. The resultant YS-TS-I@MC contains the micropores (0.51 nm) in TS-1 core, the mesopores (2.9 rim) in carbon shell as well as a void or a stack pore between TS-1 fragements (TS-1 intercrystal mesopores, -18.4 nm). Under the rigorous etching conditions, the crystalline structure of TS-1 core was well retained. The YS-TS- I@MC served as a good support for palladium nano-particles (Pd NPs) or Rh(OH)x species, giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides. 展开更多
关键词 Hierarchical porous materials Yolk-shell structure Zeolite Mesoporous carbon
原文传递
Synthesis, Characterization and Application of A Novel Carbon Bridged Half-metallocene Chromium Catalyst for Methyl Methacrylate Polymerization 被引量:1
19
作者 程正载 GONG Kai +5 位作者 WANG Yang ZHOU Xue ZHANG Weixing LI Yin SUN Junquan LI Wenbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1294-1301,共8页
A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3·(THF)3 in THF solution with the lithium salt of ligand containing cycl... A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3·(THF)3 in THF solution with the lithium salt of ligand containing cyclopentadienyl and pyridyl groups. The chromium complex was characterized by 1H NMR and elemental analysis(EA), and the crystal structure was determined by X-ray diffraction analysis. Activated by Al(i-Bu)3, the chromium complex displayed a very high activity for methyl methacrylate(MMA) polymerization. After 24 hours,more than 95.5% MMA was converted to polymethyl methacrylate(PMMA) with a viscosity average molecular weight(Wη) of 416000 g·mol-1 at 60 ℃ for MMA/ Al(i-Bu)3 /chromium catalyst molar ratio of up to 2000:20:1. Effects of temperature, molar ratios of MMA/catalyst and catalyst/cocatalyst on the polymerization have been studied. The high conversion of MMA and high molecular weight of PMMA with narrow molecular weight distribution is caused by the unique stable active site formed by the new chromium complex and aluminum cocatalyst. 展开更多
关键词 metallocene catalyst carbon bridged half-metallocene chromium crystal structure MMA polymerization PMMA
原文传递
Role of Ni(NO_3)_2 in the preparation of a magnetic coal-based activated carbon 被引量:18
20
作者 ZhangJun Xie Qiang Liu Juan Yang Mingshun Yao Xing 《Mining Science and Technology》 EI CAS 2011年第4期599-603,共5页
The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the prese... The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon. 展开更多
关键词 Magnetic coal-based activated carbon Ni(NO3)2 Magnetic properties Pore structure
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部