期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
Co/Co_(7)Fe_(3)heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst forrechargeable zinc-air batteries
1
作者 Junkang Chen Yongyue Zhuang +3 位作者 Yanxin Qiao Yu Zhang Aihua Yuan Hu Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期476-487,共12页
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c... Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies. 展开更多
关键词 bifunctional electrocatalysts oxygen reduction reaction oxygen evolution reaction zinc-air battery metal/alloy carbon sphere
在线阅读 下载PDF
Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water
2
作者 Jun Wu Liqian Liu +5 位作者 Xinyue Yan Gang Pan Jiahao Bai Chengbing Wang Fuwei Li Yong Li 《Chinese Journal of Catalysis》 2025年第4期267-284,共18页
Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment... Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd(Pd@NHCS-X,X:600–800)nanoreactors for catalytic HDO of biomass-derived vanillin in water.The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts.Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h^(–1)and a low apparent activation energy of 18.63 kJ/mol.The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations.It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction(EMSI)and produced numerous electron-rich active Pd centers,which not only intensified the dissociation and activation of H2 molecules,but also substantially improved the activation capability of vanillin via the enhanced adsorption of–C=O group.The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water.Additionally,the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds.The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high-performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation. 展开更多
关键词 Microenvironment modulation Nitrogen-doped hollow carbon sphere Pd-based catalyst Electronic metal-support interaction HYDRODEOXYGENATION VANILLIN
在线阅读 下载PDF
Construction of ternary structured Dy_(2)O_(3) nanorods/carbon spheres/few layered Dy_(2)WO_(6) nanohybrids for electrochemical supercapacitors
3
作者 Sethumathavan Vadivel P.Sujita 《Journal of Rare Earths》 2025年第10期2222-2230,I0006,共10页
In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated... In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated using a simple solvothermal approach.These ternary nanocomposites were investigated by X-ray diffraction(XRD),UV-visible diffuse-reflectance spectroscopy(UV-DRS),Fourier transform-infrared spectroscopy(FT-IR),Raman,field emission scanning electron microscopy(FESEM)with energy disperse spectroscopy(EDS),high-resolution transmission electron microscopy(HRTEM),and X-ray photoelectron spectroscopy(XPS)analyses systematically.The XRD data expose that the synthesized materials are formed with a virtuous crystalline state.The charge storage properties and electrochemical performances of the as-synthesized nanocomposites and pure components were assessed with the help of cyclic voltammogram(CV),galvanostatic charge-discharge studies(GCD),and electrochemical impedance studies(EIS),respectively.The rare-earth-based novel Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite as wo rking electrodes established commendable electrochemical perfo rmances with a maximum specific capacitance value of 123 F/g at a current density of 0.4 A/g in 2.0 mol/L aqueous KOH solution.According to the stability measurements,it was observed that the initial capacitance was maintained at~93%even after 2500 cycles,indicating that good electrochemical stability with the lowest internal resistance values was obtained from EIS analysis.The electrochemical measurements suggest that the Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite enables great competence and can be used as alternative electrode material in supercapacitor devices to avail high energy efficiency in a sustainable approach. 展开更多
关键词 Dy_(2)O_(3) Dy_(2)WO_(6) Rare earths carbon spheres Composite Supercapacitors
原文传递
Three‑Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties 被引量:11
4
作者 Yan Song Fuxing Yin +3 位作者 Chengwei Zhang Weibing Guo Liying Han Ye Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期61-76,共16页
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ... Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials. 展开更多
关键词 Three-dimensional ordered structure Mesoporous carbon spheres Zinc oxide nanoparticles Microwave absorption
在线阅读 下载PDF
Hierarchically mesoporous carbon spheres coated with a single atomic Fe-N-C layer for balancing activity and mass transfer in fuel cells 被引量:11
5
作者 Chengyong Shu Qiang Tan +9 位作者 Chengwei Deng Wei Du Zhuofan Gan Yan Liu Chao Fan Hui Jin Wei Tang Xiao-dong Yang Xiaohua Yang Yuping Wu 《Carbon Energy》 SCIE CAS 2022年第1期1-11,共11页
Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The h... Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells. 展开更多
关键词 fuel cell hierarchically mesoporous carbon spheres oxygen reduction reaction single‐atom catalysts
在线阅读 下载PDF
Resorcinol-formaldehyde resin-based porous carbon spheres with high CO_2 capture capacities 被引量:3
6
作者 Xuan Wang Jin Zhou +5 位作者 Wei Xing Boyu Liu Jianlin Zhang Hongtao Lin Hongyou Cui Shuping Zhuo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1007-1013,共7页
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintai... Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure. 展开更多
关键词 CO2 capture Porous carbon carbon sphere Ultra-micropore Resorcinol formaldehyde resins
在线阅读 下载PDF
Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills 被引量:4
7
作者 Saisai Li Haijun Zhang +2 位作者 Longhao Dong Haipeng Liu Quanli Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期513-520,共8页
Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri- ous impacts on the human living environment and health. The traditional oil-water s... Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri- ous impacts on the human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25-200 μm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12-15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents. 展开更多
关键词 graphitic carbon spheres three dimensional FOAMS gel casting oil adsorption
在线阅读 下载PDF
Fabrication of cobalt aluminum-layered double hydroxide nanosheets/carbon spheres composite as novel electrode material for supercapacitors 被引量:4
8
作者 Qi HUANG Kai-yu LIU +3 位作者 Fang HE Shui-rong ZHANG Qing-liang XIE Cheng CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第8期1804-1814,共11页
A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a... A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a thickness of20nm.The galvanostatic charge-discharge test of the CoAl-LDH/CSs composite shows a great specific capacitance of1198F/g at1A/g(based on the mass of the CoAl-LDH/CSs composite)in6mol/L KOH solution,and the composite displays an impressive specificcapacitance of920F/g even at a high current density of10A/g.Moreover,the composite remains a specific capacitance of928F/gafter1000cycles at2A/g,and the specific capacitance retention is84%,indicating that the composite has high specific capacitance,excellent rate capability and good cycling stability in comparison to pristine CoAl-LDH. 展开更多
关键词 cobalt aluminum-layered double hydroxide carbon sphere SUPERCAPACITOR growth method
在线阅读 下载PDF
Nitrogen-doped hierarchically porous carbon spheres for low concentration CO_(2) capture 被引量:3
9
作者 Yang Li Jing Wang +5 位作者 Sisi Fan Fanan Wang Zheng Shen Hongmin Duan Jinming Xu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期168-174,I0007,共8页
Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare n... Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare nitrogen-doped hierarchically porous carbon spheres was developed via co-pyrolyzation of poly(vinylidene chloride) and melamine in alginate gel beads. In this approach, melamine not only serves as the nitrogen precursor, but also acts as a template for the macropores structures. The nitrogen contents in the hierarchically porous carbon spheres reach a high level, ranging from 11.8 wt% to 14.7 wt%, as the melamine amount increases. Owing to the enriched nitrogen functionalities and the special hierarchical porous structure, the carbon spheres exhibit an outstanding CO_2 capture performance, with the dynamic capacity of as much as about 7 wt% and a separation factor about 49 at 25 °C in a gas mixture of CO_2/N_2(0.5:99.5, v/v). 展开更多
关键词 carbon sphere CO_(2)capture Hierarchical porous materials Nitrogen-doped carbon Poly(vinylidene chloride)
在线阅读 下载PDF
Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors 被引量:2
10
作者 Yuemei Chen Guoxiong Zhang +3 位作者 Jingyuan Zhang Haibo Guo Xin Feng Yigang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第11期2189-2196,共8页
Porous carbon spheres(PCS) derived from lignin have been prepared through a facile method and fabricated as electrodes for electric double-layer capacitors. Spherical shaped mixtures of lignosulfonate and crystalize... Porous carbon spheres(PCS) derived from lignin have been prepared through a facile method and fabricated as electrodes for electric double-layer capacitors. Spherical shaped mixtures of lignosulfonate and crystalized KOH are formed by spray drying of a solution of lignosulfonate and KOH. Activation by KOH is performed at high temperatures along with lignosulfonate carbonization. With an appropriate pore structure, the obtained PCS have a specific surface area of 1372.87 m^2 g^-1 and show a capacitance of 340 F g^-1 in 3 M KOH at a current density of 0.5 A g^-1. Moreover, a symmetric supercapacitor fabricated using the PCS as electrodes show a maximum capacitance of 68.5 F g^-1, and an energy density of 9.7 W h kg^-1 at a power density of 250 W kg^-1. The capacity retention is more than 94.5% after 5000 galvanostatic chargedischarge cycles. The excellent characteristics seem to be ascribed to the pore structures of PCS that have a large specific surface area and a low electrical resistance. 展开更多
关键词 Porous carbon spheres SUPERCAPACITORS Spray drying KOH activation
原文传递
Fabrication of functional hollow carbon spheres with large hollow interior as active colloidal catalysts 被引量:2
11
作者 Qiang Sun Guanghui Wang +2 位作者 Wencui Li Xiangqian Zhang Anhui Lu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期251-256,共6页
In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: firs... In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction. 展开更多
关键词 hollow carbon spheres hydrothermal synthesis ion-exchange colloidal catalysts
在线阅读 下载PDF
Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors 被引量:2
12
作者 Ming Xu Yuheng Liu +3 位作者 Qiang Yu Shihao Feng Liang Zhou Liqiang Mai 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期184-189,共6页
Porous carbon spheres represent an ideal family of electrode materials forsupercapacitors because of the high surface area,ideal conductivity,negligible aggregation,and ability to achieve space efficient packing.Howev... Porous carbon spheres represent an ideal family of electrode materials forsupercapacitors because of the high surface area,ideal conductivity,negligible aggregation,and ability to achieve space efficient packing.However,the development of new synthetic methods towards porous carbon spheres still remains a great challenge.Herein,N-doped hollow carbon spheres with an ultrahigh surface area of2044 m^(2)/g have been designed based on the phenylenediamine-formaldehyde chemistry.When applied in symmetric supercapacitors with ionic electrolyte(EMIBF_4),the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g,affording an ultrahigh energy density of 114.8 Wh/kg.Excellent cycling stability has also been achieved.The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors. 展开更多
关键词 Porous carbon spheres Hollow structure SUPERCAPACITORS Ionic electrolyte Energy density
原文传递
Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage 被引量:2
13
作者 Wenlong Shao Fangyuan Hu +5 位作者 Siyang Liu Tianpeng Zhang Ce Song Zhihuan Weng Jinyan Wang Xigao Jian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期368-376,共9页
The electrochemical performance of hard carbon in sodium storage is still limited by its poor cycling stability and rate capability because of the sluggish kinetics process.In this study,we use a simple and effective ... The electrochemical performance of hard carbon in sodium storage is still limited by its poor cycling stability and rate capability because of the sluggish kinetics process.In this study,we use a simple and effective method to accelerate the kinetics process by engineering the structure of the electrode to promote its surface and near-surface reactions.This goal is realized by the use of slightly aggregated ultra-small carbon spheres.The large specific surface area formed by the small spheres can provide abundant active sites for electrochemical reactions.The abundant mesopores and macropores derived from the secondary particle piled structure of the carbon spheres could facilitate the transport of electrolytes,shorten the diffusion distance of Na^(+)and accommodate the volume expansion during cycling.Benefiting from these unique structure features,PG700-3(carbon spheres with the diameters of 40-60 nm carbonized at 700℃)exhibits high performance for sodium storage.A high reversible capacity of 163 mAh g^(-1) could be delivered at a current density of 1.0 A g^(-1) after 100 cycles.Interestingly,at a current density of 10.0 A g^(-1),the specific capacity of PG700-3 gradually increases to 140 mAh g^(-1) after 10000 cycles,corresponding to a capacity retention of 112%.Given the enhanced kinetics of SIBs reactions,PG700-3 exhibits an excellent rate capability,i.e.,230 and 138 mAh g^(-1) at 0.1 and 5.0 A g^(-1),respectively.This study provides a facile method to attain high performance anode materials for SIBs.The design strategy and improvement mechanism could be extended to other materials for high rate applications. 展开更多
关键词 Sodium ion batteries ANODE carbon spheres High rate capability Surface reactions
在线阅读 下载PDF
Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe_(2) embedded mesoporous hollow carbon spheres 被引量:2
14
作者 Yubin Kuang Wei Qiao +1 位作者 Fulin Yang Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期447-454,I0012,共9页
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ... The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction. 展开更多
关键词 Hydrogen evolution reaction RUTHENIUM ELECTROCATALYST MoSe_(2) Mesoporous hollow carbon spheres
在线阅读 下载PDF
Consecutive hybrid mechanism boosting Na+storage performance of dual-confined SnSe2 in N,Se-doping double-walled hollow carbon spheres 被引量:2
15
作者 Xiaoyu Wu Zhenshan Yang +7 位作者 Lin Xu JianHua Wang Lele Fan Fanjie Kong Qiaofang Shi Yuanzhe Piao Guowang Diao Ming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期8-17,I0002,共11页
Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the doub... Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process. 展开更多
关键词 SnSe2 N Se-doping Double-walled hollow carbon spheres Hybrid mechanism Sodium-ion battery
在线阅读 下载PDF
Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries 被引量:2
16
作者 Jingsha Li Shijie Yi +3 位作者 Ranjusha Rajagopalan Zejie Zhang Yougen Tang Haiyan Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期308-317,共10页
Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micr... Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application. 展开更多
关键词 Zn-air batteries Oxygen reduction reaction N-doped carbon spheres MICROPORES Ultrahigh specific surface
在线阅读 下载PDF
N-doped core-shell mesoporous carbon spheres embedded by Ni nanoparticles for CO_(2)electroreduction 被引量:2
17
作者 Juan Du Qin-Yan Lin +2 位作者 Jian-Qi Zhang Sen-Lin Hou Ai-Bing Chen 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2284-2293,共10页
Herein,we successfully prepare highly dispersed and uniform small nano-size nickel nanoparticles embedded on core-shell carbon spheres by confined-deposition method.The mesoporous silica layer containing surfactant co... Herein,we successfully prepare highly dispersed and uniform small nano-size nickel nanoparticles embedded on core-shell carbon spheres by confined-deposition method.The mesoporous silica layer containing surfactant coated on the surface of the polymer sphere provides confined space and effectively controls the growth of nickel nanoparticles during pyrolysis.At the same time,the introduction of nickel species has an impact on structure of the obtained carbon spheres,and it can promote the deposition of carbon to realize the adjustment from hollow to core-shell and then to solid spheres.Owing to the uniform distribution of Ni nanoparticles with small size,mesoporous structure,N-doping groups,high specified surface areas,and core-shell structure,the obtained catalyst shows exciting ability for the production of CO by reduction of CO_(2)with a maximum CO Faradaic efficiency of 98%,indicating its promising prospect in electro-reduction of CO_(2). 展开更多
关键词 Core-shell carbon spheres Small nano-size nickel nanoparticles Confined space carbon deposition CO_(2)electroreduction
原文传递
Heteroatom-Doped Carbon Spheres from FCC Slurry Oil as Anode Material for Lithium-Ion Battery 被引量:2
18
作者 Yang Guang Wang Dengke +3 位作者 Chen Song Zhang Yue Fu Zijian Liu Wei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第1期1-10,共10页
A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolys... A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolysis reaction process at 700-1000℃.The structures of CSs are characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The effect of preparation conditions on the morphology and its electrochemical properties of CSs acting as the anode material for lithium-ion battery(LIBs) are investigated.The XPS measurement results show that the CSs mainly contain C,N,O,and S elements.With the increase of pyrolysis temperature,the particle size of CSs decreases but the graphitization degree of CSs increases.As the anode material for LIBs,CSs show excellent electrochemical performance with a maximum reversible capacity of 365 mAh/g and an initial coulombic efficiency of 73.8% at a low current density of 50 mA/g.The CSs exhibit excellent cycling stability in a current range of 50 mA/g to 2 A/g,and still can maintain a stable reversible capacity of 347 mAh/g when the current is cycled back to 50mA/g.This is mainly ascribed to the existence of suitable heteroatom content and unique spherical structure of CSs.The heteroatom-doped CSs can provide a new choice for the preparation of high efficiency anode materials for LIBs. 展开更多
关键词 slurry oil carbon spheres lithium-ion battery electrochemical performance
在线阅读 下载PDF
Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction 被引量:1
19
作者 Bangde Luo Ting Huang +1 位作者 Ye Zhu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1147-1152,共6页
Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ pres... Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ presents excellent electrocatalytic performance for hydrogen evolution reaction(HER). The overpotential at a current density of 10 m A cmis 108 and 163 mV in 0.5 M HSOand 1 M KOH, respectively, and maintains its electrocatalytic durability for at least 10 h. This work supplies a new field to challenge the construction of electrocatalysts for HER through using cost-effective carbon supported transition metal phosphides. 展开更多
关键词 COP Hydrogen evolution reaction Non-noble electrocatalysts carbon sphere
在线阅读 下载PDF
Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries 被引量:1
20
作者 QI Zi-xin LUO Sai-nan +4 位作者 RUAN Jia-feng YUAN Tao PANG Yue-peng YANG Jun-he ZHENG Shi-you 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期824-843,共20页
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t... Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented. 展开更多
关键词 Hollow carbon sphere Sodium-sulfur batteries Shuttle effect Potassium-sulfur batteries Electrochemical performance
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部