Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac...Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).展开更多
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati...Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is...Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.展开更多
Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decom...Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.展开更多
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pi...Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300℃.As-synthesized carbon materials were characterized by optical microscopy(OM),scanning electron microscopy(SEM),and Fourier-transform infrared spectroscopy(FTIR)to analyze size distribution,morphology,and functional groups,respectively.OM and SEM analysis revealed that particles,flakes,and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials,while honeycomb-like carbon materials can be derived from coffee grounds.To investigate the mechanical properties,natural rubber was filled with carbon black and as-synthesized carbon materials by the internal mixing and compression molding process.Transmission electron microscopy(TEM)was utilized to characterize the dispersion of carbon materials in the rubber matrix.The results of tensile testing showed that the natural rubber mixed with as-synthesized carbon materials from pineapple crowns exhibited 54%and 74%improvement in the ultimate tensile strength and Young’s modulus,respectively,compared with natural rubber without filled carbon materials.The enhancement in mechanical properties by activated carbon materials derived from pineapple crowns can be attributed to the flake-and fiber-like structures and good dispersion of carbon materials in the rubber matrix.In addition,it is higher than that of rubber mixed with carbon black.The results demonstrated that as-synthesized carbon materials from pineapple crowns have the potential materials to substitute carbon black in the rubber compound industry.展开更多
Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale...Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale metal-ion batteries and supercapacitors.Among the various carbon precursors,low-cost coal and coal derivatives are preferred due to their unique carbon structure with high carbon content.A variety of coal-derived carbon materials have been constructed using different strategies and have been investigated for diverse electrochemical energy storage due to their specific microstructures.In the short term,the electrochemical performance of coal-derived carbon materials is normal.However,it is imperative to develop low-cost and high-performance coal-derived carbon materials in order to reduce the cost of energy storage systems.Therefore,this review focuses on the microstructure modulation strategies for coal-based derived carbon materials to further enhance their electrochemical performance through heteroatom doping,defect engineering,interlayer engineering,crystallinity regulation,pore regulation and multi-strategy synergy.In addition,this review summarizes the enhancement mechanisms for modification strategies and analyses their limitations.Furthermore,current challenges and future research directions for the development of high-performance coal-based derived carbon materials are proposed in this review.It is anticipated that through novel modification strategies,coal-derived carbon materials will exhibit electrochemical performance comparable to that of carbon materials prepared from other precursors.展开更多
Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials...Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials are very promising alternatives in acetylene hydrochlorination,but their stability remains a challenge of major concern at present.Based on the principle of green chemistry,structurally tunable and defect-rich carbon materials were synthesized by hydrothermal carbonization and pyrolysis using glucose as carbon source and m-phenylenediamine as nitrogen source and cross-linking agent.Experimental characterization and density functional theory confirmed that pyridinic N was the main active site.The introduction of N not only regulated the formation of the hierarchically porous structure of the carbon material,but also increased the adsorption of HCl and decreased the adsorption strength of C_(2)H_(2).The synergistic effect of high N content and porous structure significantly enhanced the catalytic performance of the catalysts in acetylene hydrochlorination.The C_(2)H_(2)conversion was maintained at around98%after 100 h under the reaction conditions(T=220°C,GHSV(C_(2)H_(2))=30 h^(-1),V_(HCl)/VC_(2)H_(2)=1.15).Thus,the one-pot synthesis process used here is a good benchmark for future catalyst research.展开更多
Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromat...Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.展开更多
There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An importa...There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is comp...To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.展开更多
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou...Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.展开更多
Carbon materials, including carbon fibers, graphite, diamond, carbon foams, carbon nanotubes, and graphene, are attractive reinforcements for aluminum matrix composites due to their excellent mechanical and/or physica...Carbon materials, including carbon fibers, graphite, diamond, carbon foams, carbon nanotubes, and graphene, are attractive reinforcements for aluminum matrix composites due to their excellent mechanical and/or physical properties as well as light weight. Carbon materials reinforced aluminum (C/Al) composites are promising materials in many areas such as aerospace, thermal management, and automobile. However, there are still some challenging problems that need to be resolved, such as interfacial reactions, low wettability, and anisotropic properties. These problems have limited the use of these composites. This review mainly focuses on the categories, fabrication processes, existing problems and solutions, coatings and interfaces, challenges and opportunities of C/Al composites so as to provide a useful reference for future research.展开更多
Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with...Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.展开更多
Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including vi...Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications.展开更多
The development of highly active carbon material catalysts in catalytic wet air oxidation(CWAO)has attracted a great deal of attention. In this study different carbon material catalysts(multi-walled carbon nanotube...The development of highly active carbon material catalysts in catalytic wet air oxidation(CWAO)has attracted a great deal of attention. In this study different carbon material catalysts(multi-walled carbon nanotubes,carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction,the removal of phenol was nearly100% over the functionalized multi-walled carbon,while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals,which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions,a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First,maleic acid is transformed directly into malonic acid. Second,acetic acid is oxidized into an unknown intermediate,which is then oxidized into CO2 and H2O. Finally,formic acid and oxalic acid can mutually interconvert when conditions are favorable.展开更多
The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-gr...The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.展开更多
The helical structures possess unique physical and chemical properties,such as superelasticity,high specific strength,chirality,and electromagnetic cross-polarization characteristics.With the development of nanoscienc...The helical structures possess unique physical and chemical properties,such as superelasticity,high specific strength,chirality,and electromagnetic cross-polarization characteristics.With the development of nanoscience and nanotechnology,helical structures with various scales have been discovered or synthesized artificially.Among them,the helical carbon materials receive much attention around the world.Herein,we present a brief review of the development of helical carbon materials in terms of structures,synthesis techniques and mechanisms,and applications.The controllable designing of catalysts,carbon sources and reaction parameters plays a key role to optimize the properties of the helical carbon materials.At the same time,the applications in microwave absorption devices,sensors,catalysts,energy conversions and storage devices,and solar cell are also presented.For the good chemical and physical properties,helical carbon materials have a good application prospect in many fields.The potential issues and future opportunities of the helical carbon materials are also proposed.展开更多
文摘Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).
基金financially supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2022-049)the Natural Science Foundation of Shanxi Province,China(No.20210302123167)。
文摘Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
文摘Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.
文摘Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
基金funded by Faculty of Engineering,Burapha University,grant number 003/2567.
文摘Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300℃.As-synthesized carbon materials were characterized by optical microscopy(OM),scanning electron microscopy(SEM),and Fourier-transform infrared spectroscopy(FTIR)to analyze size distribution,morphology,and functional groups,respectively.OM and SEM analysis revealed that particles,flakes,and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials,while honeycomb-like carbon materials can be derived from coffee grounds.To investigate the mechanical properties,natural rubber was filled with carbon black and as-synthesized carbon materials by the internal mixing and compression molding process.Transmission electron microscopy(TEM)was utilized to characterize the dispersion of carbon materials in the rubber matrix.The results of tensile testing showed that the natural rubber mixed with as-synthesized carbon materials from pineapple crowns exhibited 54%and 74%improvement in the ultimate tensile strength and Young’s modulus,respectively,compared with natural rubber without filled carbon materials.The enhancement in mechanical properties by activated carbon materials derived from pineapple crowns can be attributed to the flake-and fiber-like structures and good dispersion of carbon materials in the rubber matrix.In addition,it is higher than that of rubber mixed with carbon black.The results demonstrated that as-synthesized carbon materials from pineapple crowns have the potential materials to substitute carbon black in the rubber compound industry.
基金supported by the National Natural Science Foundation of China(No.22271211)the Natural Science Foundation of Shanxi Provincee(Nos.20210302123107 and 202202060301018)Huzhou Key Laboratory of Smart and Clean Energy(No.24CE03).
文摘Compared with other metal anodes such as lithium,sodium and potassium,carbon materials exhibit low redox potential,enhanced safety,significant low-cost advantages and decent electrochemical performance for large-scale metal-ion batteries and supercapacitors.Among the various carbon precursors,low-cost coal and coal derivatives are preferred due to their unique carbon structure with high carbon content.A variety of coal-derived carbon materials have been constructed using different strategies and have been investigated for diverse electrochemical energy storage due to their specific microstructures.In the short term,the electrochemical performance of coal-derived carbon materials is normal.However,it is imperative to develop low-cost and high-performance coal-derived carbon materials in order to reduce the cost of energy storage systems.Therefore,this review focuses on the microstructure modulation strategies for coal-based derived carbon materials to further enhance their electrochemical performance through heteroatom doping,defect engineering,interlayer engineering,crystallinity regulation,pore regulation and multi-strategy synergy.In addition,this review summarizes the enhancement mechanisms for modification strategies and analyses their limitations.Furthermore,current challenges and future research directions for the development of high-performance coal-based derived carbon materials are proposed in this review.It is anticipated that through novel modification strategies,coal-derived carbon materials will exhibit electrochemical performance comparable to that of carbon materials prepared from other precursors.
基金supported by the Tianchi Innovation Leading Talent Development Fund(No.CZ002710)in Xinjiangthe Taishan Scholars Program of Shandong Province(No.tsqn202103051)+4 种基金the Project of Science and Technology Development of Yantai City(No.2023JCYJ073)Natural science foundation of Shandong province(No.ZR2023MB064)special funds for over provincial level leading talent of Yantai citythe Start-Up Foundation for High-level Professionals of Shihezi University(No.RCZK201932)Tianshan Talents Training Program of Xinjiang(Science and Technology Innovation Team,No.2022TSYCTD0021)。
文摘Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials are very promising alternatives in acetylene hydrochlorination,but their stability remains a challenge of major concern at present.Based on the principle of green chemistry,structurally tunable and defect-rich carbon materials were synthesized by hydrothermal carbonization and pyrolysis using glucose as carbon source and m-phenylenediamine as nitrogen source and cross-linking agent.Experimental characterization and density functional theory confirmed that pyridinic N was the main active site.The introduction of N not only regulated the formation of the hierarchically porous structure of the carbon material,but also increased the adsorption of HCl and decreased the adsorption strength of C_(2)H_(2).The synergistic effect of high N content and porous structure significantly enhanced the catalytic performance of the catalysts in acetylene hydrochlorination.The C_(2)H_(2)conversion was maintained at around98%after 100 h under the reaction conditions(T=220°C,GHSV(C_(2)H_(2))=30 h^(-1),V_(HCl)/VC_(2)H_(2)=1.15).Thus,the one-pot synthesis process used here is a good benchmark for future catalyst research.
文摘Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.
基金2023 undergraduate Innovation and Entrepreneurship Project of Yichun University(S202310417015)。
文摘There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
基金Project (2012M511752) supported by China Postdoctoral Science FoundationProject (2011CB605801) supported by the National Basical Research Program of China+3 种基金Project (2012QNZT004) supported by the Fundamental Research Funds of the Central Universities, ChinaProject supported by the Freedom Explore Program of Central South University, ChinaProject (CSUZC2012026) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.
基金the financial support by MOST (2011CBA00504)NSFC (21133010, 50921004, 212111074) of China
文摘Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.
基金financially supported by National Basic Research Program of China (No.2012CB619600)National High Technology Research and Development Program of China (No.2013AA031201)
文摘Carbon materials, including carbon fibers, graphite, diamond, carbon foams, carbon nanotubes, and graphene, are attractive reinforcements for aluminum matrix composites due to their excellent mechanical and/or physical properties as well as light weight. Carbon materials reinforced aluminum (C/Al) composites are promising materials in many areas such as aerospace, thermal management, and automobile. However, there are still some challenging problems that need to be resolved, such as interfacial reactions, low wettability, and anisotropic properties. These problems have limited the use of these composites. This review mainly focuses on the categories, fabrication processes, existing problems and solutions, coatings and interfaces, challenges and opportunities of C/Al composites so as to provide a useful reference for future research.
文摘Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.
基金support from the Federal Ministry of Education and Research(BMBF)under project“KaSiLi”(03XP0254D)in the competence cluster“ExcellBattMat.”。
文摘Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications.
基金supported by the National Natural Science Foundation of China (No.51078143)the Fundamental Research Funds for the Central Universities of China
文摘The development of highly active carbon material catalysts in catalytic wet air oxidation(CWAO)has attracted a great deal of attention. In this study different carbon material catalysts(multi-walled carbon nanotubes,carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction,the removal of phenol was nearly100% over the functionalized multi-walled carbon,while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals,which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions,a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First,maleic acid is transformed directly into malonic acid. Second,acetic acid is oxidized into an unknown intermediate,which is then oxidized into CO2 and H2O. Finally,formic acid and oxalic acid can mutually interconvert when conditions are favorable.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,and 22075067)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+3 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151 and B2020201001)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Science and Technology Project of Hebei Education Department(SLRC2019028)。
文摘The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.
基金financially supported by National Natural Science Foundation of China(No.51972045)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2019J025)the Sichuan Science and Technology Program(Nos.2020JDRC0015 and 2020JDRC0045)。
文摘The helical structures possess unique physical and chemical properties,such as superelasticity,high specific strength,chirality,and electromagnetic cross-polarization characteristics.With the development of nanoscience and nanotechnology,helical structures with various scales have been discovered or synthesized artificially.Among them,the helical carbon materials receive much attention around the world.Herein,we present a brief review of the development of helical carbon materials in terms of structures,synthesis techniques and mechanisms,and applications.The controllable designing of catalysts,carbon sources and reaction parameters plays a key role to optimize the properties of the helical carbon materials.At the same time,the applications in microwave absorption devices,sensors,catalysts,energy conversions and storage devices,and solar cell are also presented.For the good chemical and physical properties,helical carbon materials have a good application prospect in many fields.The potential issues and future opportunities of the helical carbon materials are also proposed.