期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Carbon Doping Triggered Efficient Electrochemical Hydrogen Evolution of Cross-Linked Porous Ru-MoO_(2) Via Solid-Phase Reaction Strategy 被引量:2
1
作者 Jialin Cai Jianye Yang +7 位作者 Xin Xie Jie Ding Leyan Liu Wanyu Tian Yushan Liu Zhiyong Tang Baozhong Liu Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期392-400,共9页
The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution r... The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2). 展开更多
关键词 carbon doped hydrogen evolution reaction macro-meso-micropore MoO_(2) RU solid-phase reaction
在线阅读 下载PDF
Mechanochemical Synthesis of Visible-light Induced Photocatalyst with Nitrogen and Carbon Doping 被引量:2
2
作者 殷澍 Maskazu Komatsu +4 位作者 张其武 李锐星 唐清 Fumio Saito Tsugio Sato 《过程工程学报》 CAS CSCD 北大核心 2006年第3期477-481,共5页
Nitrogen and/or carbon doped titania photocatalysts were prepared by a novel mechanochemical method. The prepared powders possessed two absorption edges around 400 and 540 nm wavelengths and showed excellent photocata... Nitrogen and/or carbon doped titania photocatalysts were prepared by a novel mechanochemical method. The prepared powders possessed two absorption edges around 400 and 540 nm wavelengths and showed excellent photocatalytic ability for nitrogen monoxide oxidation under visible light irradiation. Under the irradiation of visible light of wavelength >510 nm,37% of nitrogen monoxide could be continuously removed by the carbon and nitrogen co-doped titania prepared by planetary ball milling of P-25 titania–10% hexamethylenetetramine mixture followed by calcination in air at 400-C. 展开更多
关键词 mechanochemical synthesis titania photocatalyst carbon and nitrogen doping nitrogen monoxide OXIDATION
在线阅读 下载PDF
Synergistic effects of carbon doping and coating of TiO_(2) with exceptional photocurrent enhancement for high performance H2 production from water splitting 被引量:2
3
作者 Yingying Wang Yan-Xin Chen +7 位作者 Tarek Barakat Tian-Ming Wang Alain Krief Yu-Jia Zeng Marvin Laboureur Luca Fusaro Hong-Gang Liao Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期141-151,共11页
The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boos... The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boost textural,optical and electronic properties and photocurrent of TiO_(2) for high performance visible light H2 production from water splitting has been comprehensively investigated.Carbon doping can significantly increase the thermal stability,thus inhibiting the phase transformation of the Titania material from anatase to rutile while carbon coating can suppress the grain aggregation of TiO_(2).The synergy of carbon doping and coating can not only ensure an enhanced narrowing effect of the electronic band gap of TiO_(2) thus extending the absorption of photocatalysts to the visible regions,but also promote dramatically the separation of electron-hole pairs.Owing to these synergistic effects,the carbon coated and doped TiO_(2) shows much superior photocatalytic activity for both degradation of organics and photocatalytic/photoelectro chemical(PEC)water splitting under simulated sunlight illumination.The photocatalytic activity of obtained materials can reach 5,4 and 2 times higher than that of pristine TiO_(2),carbon doped TiO_(2) and carbon coated TiO_(2),respectively in the degradation of organic pollutants.The carbon coated and doped TiO_(2) materials exhibited more than 37 times and hundreds of times photocurrent enhancement under simulated sunlight and visible light,respectively compared to that of pristine TiO_(2).The present work providing new comprehensive understanding on carbon coating and doping effect could be very helpful for the development of advanced TiO_(2) materials for a large series of applications. 展开更多
关键词 carbon coating and doping TiO_(2) ONE-POT PEC water splitting Solar light photocatalysis
在线阅读 下载PDF
Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine
4
作者 SUN Xuehua MA Min +4 位作者 LIU Jianting TIAN Rui CHAI Hongmei CUI Huali GAO Loujun 《无机化学学报》 北大核心 2025年第3期561-573,共13页
We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.C... We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1). 展开更多
关键词 co⁃doped carbon dots 2 4⁃DNPH fluorescence detection
在线阅读 下载PDF
A facile strategy for customizing multifunctional magnetic-dielectric carbon microflower superstructures deposited with carbon nanotubes
5
作者 Chengjuan Wang Yanxiang Wang +3 位作者 Haotian Jiang Yanqiu Feng Deli Yang Chengguo Wang 《Journal of Materials Science & Technology》 2025年第20期34-46,共13页
The novel fabrication of multiple components and unique heterostructure can inject infinite vitality into the electromagnetic wave(EMW)attenuation field.Herein,through the self-assembly of polyimide com-plexes and cat... The novel fabrication of multiple components and unique heterostructure can inject infinite vitality into the electromagnetic wave(EMW)attenuation field.Herein,through the self-assembly of polyimide com-plexes and catalytic chemical vapor deposition,porous carbon microflowers were synthesized accompa-nied by carbon nanotubes(CNTs).By regulating the metal ions,the composition and structure of the as-obtained hybrids are modified correspondingly,and thus the adjustable thermal management and EMW absorption capabilities are obtained.In detail,the rich pores and huge specific surface area endow the hierarchical structures with distinguished thermal insulation ability(λ<0.07).The carbon framework and CNTs are beneficial for consuming EMWs via conductive loss and defect polarization loss while reduc-ing the filling ratio and thickness.The doped heteroatoms and abundant heterointerfaces generate ample dipole polarization and interface polarization losses(supported by DFT calculation).The metal nanopar-ticles uniformly embedded in the carbon framework offer optimized impedance matching,proper de-fect polarization,and suitable magnetic loss.Accordingly,the synergy of magnetic-dielectric balance and flower-like superstructure enables FNCFN2 and NNCFN2 to accomplish remarkable microwave absorbing capacity with thin thickness(14 wt.%).Therefore,respectable specific reflection loss and specific effec-tive absorption bandwidth are acquired(215.39 dB mm^(-1) and 22.10 GHz mm^(-1),257.23 dB mm^(-1) and 22.12 GHz mm^(-1) respectively),superior to those of certain renowned carbon-based absorbers.The simu-lation results of electric field intensity distributions,power loss density,and radar cross section reduction(maximum value of 36.02 dBm2)also verify the prominent radar stealth capability.Moreover,the cus-tomizable approach can be applied to other metals to obtain fulfilling behaviors.Henceforth,this work provides profound insights into the relationship between structure and performance,and proposes an efficient path for mass-producing multifunctional and high-performance EMW absorbers with excellent thermal properties. 展开更多
关键词 Component customization Flower-like porous superstructure Magnetic-dielectric synergy carbon nanotubeHeteroatom doping Microwave absorption Thermal insulation
原文传递
Yolk–Shell CoNi@N‑Doped Carbon‑CoNi@CNTs for Enhanced Microwave Absorption,Photothermal,Anti‑Corrosion,and Antimicrobial Properties
6
作者 Qiqin Liang Mukun He +6 位作者 Beibei Zhan Hua Guo Xiaosi Qi Yunpeng Qu Yali Zhang Wei Zhong Junwei Gu 《Nano-Micro Letters》 2025年第7期305-322,共18页
The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to... The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities. 展开更多
关键词 Sea urchin Like yolk Shell structure CoNi@N Doped carbon CoNi@carbon nanotubes Mixed Dimensional nanocomposites Microwave absorption Photothermal and antimicrobial
在线阅读 下载PDF
Rational molecular design of P-doped porous carbon material for the VOCs adsorption
7
作者 Changqing Su Wentao Jiang +3 位作者 Yang Guo Guodong Yi Zengxing Li Huan Li 《Chinese Journal of Chemical Engineering》 2025年第3期155-163,共9页
The objective of this study was to identify and synthesize functional groups for the efficient adsorption of volatile organic compounds(VOCs)through a combination of theoretical calculations,molecular design,and exper... The objective of this study was to identify and synthesize functional groups for the efficient adsorption of volatile organic compounds(VOCs)through a combination of theoretical calculations,molecular design,and experimental validation.The density functional theory(DFT)calculation,focusing on the P-containing functional groups,showed that methanol adsorption was dominated by the electrostatic interaction between the carbon surface and methanol,while toluene was mainly trapped through π-π dispersive interaction between toluene molecule and functional group structure.The experimental results showed the phosphorus-doped carbon materials(PCAC)prepared by directly activating potassium phytate had a phosphorus content of up to 4.5%(atom),mainly in the form of C-O-P(O)(OH)_(2).The material exhibited a high specific area(987.6m^(2)·g^(-1))and a large adsorption capacity for methanol(440.0 mg·g^(-1))and toluene(350.1 mg·g^(-1)).These properties were superior to those of the specific commercial activated carbon(CAC)sample used for comparison in this study.The adsorption efficiencies per unit specific surface area of PCAC were 0.45 mg·g^(-1) m^(-2) for methanol and 0.35 mg·g^(-1)·m^(-2) for toluene.This study provided a novel theoretical and experimental framework for the molecular design of polarized elements to enhance the adsorption of polar gases,offering significant advancements over existing commercial solutions. 展开更多
关键词 Molecular design Doped porous carbon VOCS ADSORPTION Density functional theory
在线阅读 下载PDF
Cobalt-modified nitrogen-doped carbon nanotubes as bifunctional catalysts for one-pot synthesis of 2,5-diformylfuran from glucose
8
作者 Trinh Hao Nguyen Dao Anh Le Nguyen +4 位作者 Duy Quoc Mai Mai Ngoc Thi Le Diep Dinh Le Ha Bich Phan Phuong Hoang Tran 《Journal of Energy Chemistry》 2025年第4期440-447,共8页
In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to sign... In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to significant environmental issues[1].Currently,sustainable biomass resources have attracted much attention as potential substitutes to fossil fuels for producing biofuels and commodity chemicals[2]. 展开更多
关键词 commodity chemicals fossil fuels diformylfuran fossil fuel one pot synthesis natural gasas bifunctional catalysts cobalt modified nitrogen doped carbon nanotubes
在线阅读 下载PDF
Covalent organic framework assisted low-content ultrafine Ru on porous N-doped carbon for efficient hydrogen evolution reaction
9
作者 Kong-Gang Qu Zhi-Fei Chen +6 位作者 Li-Hui Wang Hai-Bo Li Su-Yuan Zeng Rui Li Li-Jian Meng Hong-Yan Chen Qing-Xia Yao 《Rare Metals》 2025年第3期2094-2102,共9页
Pt-based materials are the benchmarked catalysts in the cathodic hydrogen evolution reaction(HER)of water splitting;the prohibitive cost and scarcity of Pt immensely impede the commercialization of hydrogen energy.Ru ... Pt-based materials are the benchmarked catalysts in the cathodic hydrogen evolution reaction(HER)of water splitting;the prohibitive cost and scarcity of Pt immensely impede the commercialization of hydrogen energy.Ru has aroused significant concern because of its Pt-like activity and much lower price.However,it’s still a top priority to minimize the Ru loading and pursue the most superior cost performance. 展开更多
关键词 porous n doped carbon most superior cost performance hydrogen evolution reaction water splittingthe cost performance cathodic hydrogen evolution reaction her covalent organic framework ultrafine Ru
原文传递
Sodium storage properties of Fe, Ni -bimetallic doped carbon-modified NaTi_(2)(PO_(4))_(3)
10
作者 Junling Che Jiaojiao Yu +6 位作者 Tong Xu Junchao Ma Kang Yu Jian Qin Wei Ren Yanmin Jia Xifei Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2249-2259,共11页
NaTi_(2)(PO_(4))_(3)(NTP)is a material with a NASICON structure,a three-dimensional open type skeleton,and suitable negative voltage window,which is widely regarded as a magnetic anode material for aqueous sodium ion ... NaTi_(2)(PO_(4))_(3)(NTP)is a material with a NASICON structure,a three-dimensional open type skeleton,and suitable negative voltage window,which is widely regarded as a magnetic anode material for aqueous sodium ion batteries(ASIBs).However,NTP’s in-trinsically poor conductivity hampers their use in ASIBs.Herein,bimetallic doped carbon material was designed and combined with the sol-gel method to prepare NaTi_(2)(PO_(4))_(3)-C-FeNi(NTP-C-FeNi)composite materials.This bimetallic doped carbon composite NTP ma-terial not only has a large specific surface area,but also effectively improves conductivity and promotes rapid migration of Na^(+).Follow-ing the rate performance test,NTP-C-FeNi retained a reversible capacity of 116.75 mAh·g^(-1) at 0.1 A·g^(-1),representing 95.9%of the first cycle capacity.After 500 cycles at 1.5 A·g^(-1),the cycle fixity was 85.3%.The enhancement of electrochemical performance may owe to the widening of pathways and acceleration of Na^(+)insertion/extraction facilitated by FeNi-C doping,while the carbon coating effectively promotes electrode charge transfer.The results indicate that the bimetallic doped carbon composite NaTi_(2)(PO_(4))_(3) holds potential for prac-tical applications in novel aqueous sodium ion battery systems. 展开更多
关键词 aqueous sodium-ion batteries NaTi_(2)(PO_(4))_(3) bimetallic doped carbon electrochemical performance
在线阅读 下载PDF
Tuning the magnetic and electronic properties of strontium titanate by carbon doping 被引量:2
11
作者 Hui Zeng Meng Wu +2 位作者 Hui-Qiong Wang Jin-Cheng Zheng Junyong Kang 《Frontiers of physics》 CSCD 2021年第4期195-204,共10页
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation(GGA)and the GGA+U app... The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation(GGA)and the GGA+U approach.Our results show that the structural stability,electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants.In both GGA and GGA+U calculations,the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors,which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller.As the C–C distance increases,C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations,while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method.Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3,which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material. 展开更多
关键词 strontium titanate carbon doping magnetic and electronic states carbon coupling C-C dimer pair GGA+U
原文传递
New strategy of S,N co‐doping of conductive‐copolymer‐derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol 被引量:3
12
作者 Jingping Zhong Kexin Huang +6 位作者 Wentao Xu Huaguo Tang Muhammad Waqas Youjun Fan Ruixiang Wang Wei Chen Yixuan Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1205-1215,共11页
Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel... Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate. 展开更多
关键词 Methanol oxidation Conductive copolymers Dual‐doped carbon nanotubes Pt‐based nanoparticles DFT calculation
在线阅读 下载PDF
Co/CoO heterojunction rich in oxygen vacancies introduced by O_(2)plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc-air battery 被引量:3
13
作者 Leijun Ye Weiheng Chen +1 位作者 Zhong-Jie Jiang Zhongqing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期14-25,共12页
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well... Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2)plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2)and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs. 展开更多
关键词 HETEROJUNCTION oxygen evolution/reduction reaction oxygen vacancies rechargeable zinc–air battery three‐dimensional nitrogen‐doped hollow carbon nanoboxes
在线阅读 下载PDF
Influence of Sodium Carbonate Amount on Crystalline Phase and Structure Stability for Doping Nickel Hydroxide
14
作者 赵腾起 朱燕娟 +3 位作者 LI Wenhua FENG Zuyong ZHANG Wei JIAN Xiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期552-558,共7页
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a s... Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2. 展开更多
关键词 sodium carbonate nickel hydroxide crystalline structural stability multiple doping
原文传递
MnS–MnO heterogeneous nanocube@N,S-doped carbon as a highly efficient bifunctional water splitting electrocatalyst
15
作者 Xue-Qian Wang Xiang-Ying Ma +7 位作者 Wang-Zhi Wu Hui-Bing He Nan-Nan Wang Ren-Ji Zheng Shao-Jian Ma Yan-Qiu Zhu Pei-Kang Shen Jin-Liang Zhu 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期1977-1988,共12页
A stable,efficient,and economical bifunctional electrolytic catalyst would be incredibly beneficial for the development of hydrogen production by electrocatalytic water splitting.In this study,we synthesized a novel ... A stable,efficient,and economical bifunctional electrolytic catalyst would be incredibly beneficial for the development of hydrogen production by electrocatalytic water splitting.In this study,we synthesized a novel MnS–MnO heterogeneous nanocube@N,S-doped carbon(MnS–MnO@NSC).MnS–MnO nanocubes possess rich heterogeneous interfaces and plentiful catalytic active sites to promote electrochemical reactions,while the N,S-doped carbon shell possesses excellent conductivity and catalytic properties and protects the nanocubes.MnS–MnO@NSC exhibited excellent electrochemical properties as an effective bifunctional electrocatalyst for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in KOH solution.In the HER,the overpotential was as low as 124 mV at a current density of 10 mA·cm^(-2)while in the OER,it was only 340 mV at 100 mA·cm^(-2)under the same conditions.In addition,a MnS–MnO@NSC||MnS–MnO@NSC electrolyzer exhibited almost comparable activity and higher steadiness than those exhibited by the state-of-the-art Pt/C||RuO_(2)/C system for full water splitting in KOH solution. 展开更多
关键词 Manganese sulfide Manganese oxide Doped carbon Heterogeneous nanocube Water splitting
原文传递
Elucidating the role of embedding dispersed cobalt sites in nitrogen-doped carbon frameworks in Si-based anodes for stable and superior storage
16
作者 Yueying Chen Ping Li +8 位作者 Mianying Huang Chunlei Wu Qianhong Huang Tingyang Xie Xiaoming Lin Akif Zeb Yongbo Wu Zhiguang Xu Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期180-195,共16页
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s... Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials. 展开更多
关键词 Co nanoparticles Nitrogen doped carbon Silicon Lithium/sodium storage Metal-organic frameworks(MOFs)
在线阅读 下载PDF
Cu,N codoped carbon nanosheets encapsulating ultrasmall Cu nanoparticles for enhancing selective 1,2-propanediol oxidation
17
作者 Yonghai Feng Min Yu +2 位作者 Minjia Meng Lei Liu Dewei Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期27-35,共9页
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited... In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling. 展开更多
关键词 Selective oxidation Copper and nitrogen doped carbon 1 2-PROPANEDIOL Ultrasmall Cu nanoparticles Lactic acid
在线阅读 下载PDF
Constructing stronger interaction with polysulfides for faster conversion of Li_(2)S_(2)to Li_(2)S by Co-CoSe_(2)@N,Se-doped carbon nanocages in lithium-sulfur batteries
18
作者 Ming Zheng Wei Wu +3 位作者 Ruijian Luo Suhao Chen Junzhe Zhao Niancai Cheng 《Journal of Materials Science & Technology》 CSCD 2024年第28期165-176,共12页
The transformation of Li_(2)S_(2)-Li_(2)S is indubitably the most crucial and labored rate-limiting step among the sophisticated reactions for the lithium-sulfur batteries(LSBs),the adjustment of which is anticipated ... The transformation of Li_(2)S_(2)-Li_(2)S is indubitably the most crucial and labored rate-limiting step among the sophisticated reactions for the lithium-sulfur batteries(LSBs),the adjustment of which is anticipated to impede the shuttle effect.Herein,a N,Se dual-doped carbon nanocages embedded by Co-CoSe_(2)nanoparticles(Co-CoSe_(2)@NSeC)is employed as a functional coating layer on commercial separator to improve the performance of LSBs.The well-designed N,Se co-doped nanostructures endow the modified layer with a satisfactory capacity for blocking polysulfides.Both calculations and experiments jointly disclose that the Li_(2)S_(2)to Li_(2)S reaction,including the liquid-solid conversion,was prominently expedited both thermodynamically and electrodynamically.Consequently,the batteries fabricated with Co-CoSe_(2)@NSeC modified separator can deliver a favorable 764.2 mAh g^(−1)with 8.0 C,accompanied by a salient long cycling lifespan(only 0.066%at 1 C and 0.061%under 2 C after 1000 and 2000 cycles),and a desired anode protection.In addition,despite a raised areal loading of 7.53 mg cm^(−2)was introduced,the cells assembled by Co-CoSe_(2)@NSeC@PP are allowed to produce an outstanding initial behavior of 8.71 mAh cm^(−2)under 0.2 C.This work may reinforce further explorations and serve with valuable insights into N,Se dual-doping materials for high-performance LSBs. 展开更多
关键词 N Se doping carbon Li_(2)S_(2)-Li_(2)S phase-transition Hollow nanostructure Modified separator Lithium-sulfur batteries
原文传递
Structure,electronic,and nonlinear optical properties of superalkaline M_(3)O(M=Li,Na)doped cyclo[18]carbon
19
作者 刘晓东 卢其亮 罗其全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期311-317,共7页
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef... Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm. 展开更多
关键词 superalkaline doped carbon structure and electronic properties nonlinear optical properties density functional theory(DFT)
原文传递
Effect of carbon on microstructures of Ti-45Al-3Fe-2Mo-xC alloy 被引量:2
20
作者 周灿旭 刘彬 +2 位作者 刘咏 邱从章 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1730-1736,共7页
The effect of carbon addition on the microstructures of TiAl-based alloy(Ti-45Al-3Fe-2Mo) was studied.The proportion of β/B2 phase reduces with the content of carbon increasing,while the colony size increases.With ... The effect of carbon addition on the microstructures of TiAl-based alloy(Ti-45Al-3Fe-2Mo) was studied.The proportion of β/B2 phase reduces with the content of carbon increasing,while the colony size increases.With increasing the carbon content,the lamellar spacing first decreases from 267 nm(Ti-45Al-3Fe-2Mo) to 237 nm(Ti-45Al-3Fe-2Mo-0.3C) and 155 nm(Ti-45Al-3Fe-2Mo-0.5C),but then increases to 230 nm(Ti-45Al-3Fe-2Mo-1.0C) with further increase in C level,which is affected by the inhibition of carbon atom and precipitation of carbides at the lamellar interface.Precipitation of carbides shows a response to aging time at 800 ℃.P-type carbides grow up at the boundaries and near the dislocation areas with the prolonging of aging time.And these carbides are projected different morphology in different beam directions(BD).The effects of these microstructural modifications were examined and the observations were discussed. 展开更多
关键词 TiAl alloy carbon doping microstructure CARBIDE
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部