Efficient disposal of oily water pollution and oily sludge(OS)production with low energy demand has garnered significant attention for the low carbon transition of the petroleum industry.How to overcome the hardships ...Efficient disposal of oily water pollution and oily sludge(OS)production with low energy demand has garnered significant attention for the low carbon transition of the petroleum industry.How to overcome the hardships from severe emulsion and interaction with soil minerals in emulsion-soil(OS)is a significant challenge with the prospective opportunities of solar energy substitution.This paper proposed the solar-driven photothermal conversion technology for efficient dehydration of OS and purification of oily water using a multifunctional material.A biomass-based carbon aerogel(BCA-600)with a porous three-dimensional(3D)structure and photothermal conversion characteristics was synthesized.Interestingly,this carbon aerogel possessed adjustable surface wettability,enabling it to adsorb high viscosity crude oil on the water surface(4.28 g·g^(−1))and achieve demulsification-separation in water-in-oil emulsions(97.28%)with the assistance of solar irradiation.Accordingly,the synergistic action of solar heating and separation-adsorption of emulsion by BCA-600 contributed to the efficient photothermal dehydra-tion for both OS and emulsion.The highest dehydration efficiency for OS reached 90.68%with the OS/BCA-600 mass ratio of 10:2.Moreover,BCA-600 could remain in the dehydrated OS without separation to participate in the following pyrolysis with enhanced effects by confined-catalytic cracking,achieving a“one stone,two birds”effect.Overall,the solar photothermal approach exhibits significant potential for treating oily pollutants,reducing carbon emissions by more than 100 times compared to traditional thermal methods.This could be a strong push for the low carbon transition of the petroleum industry.展开更多
The continuous innovation and widespread application of digital technology have expedited the transformation of productivity and presented an opportunity to achieve carbon peak and carbon neutrality.Digital new qualit...The continuous innovation and widespread application of digital technology have expedited the transformation of productivity and presented an opportunity to achieve carbon peak and carbon neutrality.Digital new quality productivity,characterized by the integration of advanced technologies,innovative business models,a new economic framework,and ongoing innovation,stands as a superior production factor.It plays a crucial role in fostering high-quality economic growth and leading efforts to meet the“dual carbon”objectives.Using panel data from Chinese prefecture-level cities from 2011 to 2022,this study employs various econometric models to empirically examine the impact and underlying mechanisms of digital new quality productivity on carbon emission reduction.The findings reveal that:(1)There exists a significant U-shaped nonlinear relationship between digital new quality productivity and carbon emission performance,with an inflection point at 0.2750.(2)Dual objective constraints significantly moderate the relationship between digital new productivity and carbon emission performance.Setting moderate economic growth targets positively influences the effect of digital new quality productivity on carbon emission performance.(3)The impact of digital new quality productivity on carbon emission performance varies considerably based on factors such as urban location,city size,resource endowment,and specific city characteristics.It is essential to focus on nurturing digital new quality productivity,exploring the integration of balanced economic growth objectives with environmental goals,and effectively leveraging the environmental benefits derived from the advancement of digital new quality productivity tailored to local contexts.展开更多
Coal dependence and inefficient decentralized heating have significantly increased China’s energy consumption for winter heating,increasing air pollution and exacerbating the greenhouse effect.In 2017,China implement...Coal dependence and inefficient decentralized heating have significantly increased China’s energy consumption for winter heating,increasing air pollution and exacerbating the greenhouse effect.In 2017,China implemented the Pilot Policy on Clean Winter Heating in Northern China,aiming to achieve high central heating coverage and cleaner energy consumption.Studying the effects of this policy can help promote its implementation and serve as a reference for effective adjustment of the contents in the future.However,few studies have investigated this policy and its carbon reduction effects,and most focus on the provincial or city levels.Therefore,this paper considers the policy’s influence on air pollution and carbon emissions at the county level to provide a precise and comprehensive assessment of the policy effects.We use panel data from 1290 counties in 15 provinces in Northern China from 2014 to 2021,applying a multiperiod difference-in-differences model to quantify the impact of the policy on carbon emissions and air quality in the pilot area.We then conduct a series of tests to demonstrate the robustness of the results and analyze the mechanisms of the policy effects from two perspectives,namely,central heating and natural gas use,through a mediating effect model.Finally,we examine the heterogeneity of policy effects between counties based on geographic location and per capita income levels of rural residents through a moderating effect model.The results reveal that the policy significantly reduces air pollution and carbon emissions in the pilot area by increasing the central heating area and natural gas use.Compared with the central and western regions in the north and areas with low-income rural residents,the policy effects in the eastern regions in the north and areas with high-income rural residents are more pronounced.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensi...At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensive green transformation of economic and social development.This study,based on urban panel data from 281 prefecture-level cities in China' Mainland from 2010 to 2020,developed a DI indicator system for these cities and employed a double machine learning algorithm for the first time to investigate the intrinsic mechanisms and incentivizing effects of DI on SPCR.The results showed that:①DI significantly promotes SPCR.②Mechanism tests demonstrated that DI can indirectly enhance SPCR by optimizing resource allocation and reinforcing government interventions.③Further analysis showed that the impact of DI on SPCR was more substantial in regions with lower levels of economic and environmental competition.Moreover,the SPCR driven by DI exhibited heterogeneity,characterized by stronger effects in“resource-based cities>non resource-based cities”and“non-capital economic zones>capital economic zones”.The conclusions of this study hold significant implications for fully harnessing the synergy between digitization and intelligence to empower SPCR.In addition,the findings are valuable for the government’s integrated promotion of the“dual carbon”goal and the“digital China”strategy.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a cruc...As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.展开更多
Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tr...Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tremendous potential in carbon reduction. Considering the consistently increasing demand of iron and steel, to obtain significant carbon reduction by reducing the steel production is not practical, thus the development and implementa- tion of carbon reduction programs and technologies is important for the steel industry. Despite the significant poten- tial of carbon reduction in the steel industry, ironmaking and steelmaking processes are complex. Therefore, resear- ches and developments for the carbon reduction must focus on key processes. Here, key processes and technologies adopted in ULCOS program in EU, COURSE 50 program in Japan, POSCO program in South Korea, AISI pro- grams in US and other carbon reduction programs are summarized and evaluated, and feasible suggestions for carbon reduction in developing countries are presented. If effective measures can be referred to and taken in developing coun- tries, global carbon emission can be greatly reduced.展开更多
The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results...The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.展开更多
This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of ...This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of the methods are of simple process, none lead-in pollution agent, low cost and adaptation to large-lot production. The stability of the magnetic powders is improved through modifying the Fe_3O_4 with SiO_2 in solation method.The results of the characterizations show that the superparamagnetic SiO_2-Fe_3O_4sub-microparticles(~600 nm)with saturation intensity of 36.4 m A·m^2·g^(-1)are obtained successfully. Moreover, the quantitating, repeatability and high stability of the carbon reduction method are demonstrated as well.展开更多
Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparat...Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.展开更多
This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine a...This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.展开更多
Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy document...Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.展开更多
In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic l...In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.展开更多
Guangdong’s carbon emissions have surpassed the world’s 11th largest emitter.It is indispensable for this province to find a robust cost-effective strategy for reducing carbon emissions.This study employed the Low E...Guangdong’s carbon emissions have surpassed the world’s 11th largest emitter.It is indispensable for this province to find a robust cost-effective strategy for reducing carbon emissions.This study employed the Low Emissions Analysis Platform model,marginal cost curves,and Monte Carlo methods to simulate the energy consumption,carbon emissions,and economic benefits of emission reduction in Guangdong Province from 2020 to 2030 under the application of various structural optimization policies and energy-saving technologies.The main findings are as follows:In 2030,Guangdong Province is projected to achieve a carbon emission reduction of 273.6 to 304.6million t CO_(2eq),with a total reduction cost ranging from 1030.9 to 1452.2 billion yuan.Increasing the share of renewable energy,which still has significant growth potential,can lead to a 1.4 times greater reduction in carbon emissions compared to the application of energy-saving technologies,despite the latter yielding 2.3 times more energy savings.The emission reduction measures with net-cost can contribute 71.4%to the total carbon reduction of the province,being much larger than those with net benefits.The power sector plays a critical role in carbon emission reduction within Guangdong Province,with its various measures exerting the most substantial impact on emission reduction quantity and cost,contributing cumulative variance contributions of 90.1%and 84.3%,respectively.It has relatively large potential for emission reduction and relatively low cost of structural adjustment.展开更多
Urban green-blue infrastructures(GBls)are increasingly gaining attention in the pursuit of carbon neutrality,particularly within residential areas.With this background,this study established an integrated quantitative...Urban green-blue infrastructures(GBls)are increasingly gaining attention in the pursuit of carbon neutrality,particularly within residential areas.With this background,this study established an integrated quantitative framework to assess both direct and indirect carbon reduction benefits of urban GBls,by leveraging Life Cycle Assessment approach to precisely calibrate the carbon sequestration benefits of three typical urban GBls(green roofs,sunken green spaces,and rain gardens)under three different scenarios and building a carbon sequestration database that includes 36 local plant species in Shanghai.The research results indicate that GBls have a reducing effect on carbon emissions in urban residential areas.If extrapolating the simulation results to the city scale,the preliminary estimation suggests that the construction of GBls within residential areas in Shanghai can achieve a carbon sink of approximately 540.54 million tCOzeq per year.This level of carbon sequestration is equivalent to 32%of Shanghai's annual carbon emissions.It is evident that the construction of GBls possesses significant potential in carbon reduction benefits and for achieving urban carbon neutrality strategies.展开更多
The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial car...The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.展开更多
Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on ...Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on the dimensionality and function correlations of COF materials.In the present work,one new two-dimensional phthalocyanine COF,namely 2D-NiPc-COF,and one new three-dimensional phthalocyanine COF,namely 3D-NiPc-COF,were fabricated according to the imide reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(Ⅱ) with [2,2-bipyridine]-5,5-diamine and tetrakis(4-aminophenyl) methane,respectively.The crystalline structures of both COFs are verified by the powder X-ray diffraction analysis,computational simulation,and high resolution transmission electron microscopy measurement.Notably,3D-NiPc-COF with dispersed conjugated modules has high utilization efficiency of NiPc electroactive sites of 26.8%,almost two times higher than the in-plane stacking2D-NiPc-COF measured by electrochemical measurement,in turn resulting in its superior electrocatalytic performance with high CO_(2)-to-CO Faradaic efficiency over 90% in a wide potential window,a large partial CO current density of-13.97 mA/cm^(2) at-0.9 V(vs.reversible hydrogen electrode) to 2D-NiPc-COF.Moreover,3D-NiPc-COF has higher turnover number and turnover frequency of 5741.6 and 0.18 s^(-1) at-0.8 V during 8 h lasting measurement.The present work provides an example for the investigation on the correlation between dimensionality and electrochemical properties of 2D and 3D phthalocyanine COFs.展开更多
Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conve...Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.展开更多
The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,elect...The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,electrocatalytic CO_(2)reduction in acidic electrolytes has garnered significant attention for its potential in sustainable carbon utilization and renewable energy storage.This review provides a summary of recent advancements in acidic CO_(2)reduction,with a focus on catalyst design strategies,the optimization of the local reaction environment,and the effect of cations.We first evaluated the performance and discussed the challenges for acidic CO_(2)reduction in H-type cells,flow cells,and membrane electrode assembly.Afterward,we highlight the innovative strategies for promoting CO_(2)reduction through optimizing the intrinsic activity and regulating the local environment of catalysts.The critical role of cations in enhancing CO_(2)reduction selectivity is also discussed.The review concludes with an outlook on future research directions,especially the need for the design of catalysts and systems that are stable,scalable,and highly efficient.展开更多
基金supported by the National Natural Science Foundation of China(52376205)the Chinese Academy of Engineering Strategic Research and Consulting Project(2023-XZ-38).
文摘Efficient disposal of oily water pollution and oily sludge(OS)production with low energy demand has garnered significant attention for the low carbon transition of the petroleum industry.How to overcome the hardships from severe emulsion and interaction with soil minerals in emulsion-soil(OS)is a significant challenge with the prospective opportunities of solar energy substitution.This paper proposed the solar-driven photothermal conversion technology for efficient dehydration of OS and purification of oily water using a multifunctional material.A biomass-based carbon aerogel(BCA-600)with a porous three-dimensional(3D)structure and photothermal conversion characteristics was synthesized.Interestingly,this carbon aerogel possessed adjustable surface wettability,enabling it to adsorb high viscosity crude oil on the water surface(4.28 g·g^(−1))and achieve demulsification-separation in water-in-oil emulsions(97.28%)with the assistance of solar irradiation.Accordingly,the synergistic action of solar heating and separation-adsorption of emulsion by BCA-600 contributed to the efficient photothermal dehydra-tion for both OS and emulsion.The highest dehydration efficiency for OS reached 90.68%with the OS/BCA-600 mass ratio of 10:2.Moreover,BCA-600 could remain in the dehydrated OS without separation to participate in the following pyrolysis with enhanced effects by confined-catalytic cracking,achieving a“one stone,two birds”effect.Overall,the solar photothermal approach exhibits significant potential for treating oily pollutants,reducing carbon emissions by more than 100 times compared to traditional thermal methods.This could be a strong push for the low carbon transition of the petroleum industry.
文摘The continuous innovation and widespread application of digital technology have expedited the transformation of productivity and presented an opportunity to achieve carbon peak and carbon neutrality.Digital new quality productivity,characterized by the integration of advanced technologies,innovative business models,a new economic framework,and ongoing innovation,stands as a superior production factor.It plays a crucial role in fostering high-quality economic growth and leading efforts to meet the“dual carbon”objectives.Using panel data from Chinese prefecture-level cities from 2011 to 2022,this study employs various econometric models to empirically examine the impact and underlying mechanisms of digital new quality productivity on carbon emission reduction.The findings reveal that:(1)There exists a significant U-shaped nonlinear relationship between digital new quality productivity and carbon emission performance,with an inflection point at 0.2750.(2)Dual objective constraints significantly moderate the relationship between digital new productivity and carbon emission performance.Setting moderate economic growth targets positively influences the effect of digital new quality productivity on carbon emission performance.(3)The impact of digital new quality productivity on carbon emission performance varies considerably based on factors such as urban location,city size,resource endowment,and specific city characteristics.It is essential to focus on nurturing digital new quality productivity,exploring the integration of balanced economic growth objectives with environmental goals,and effectively leveraging the environmental benefits derived from the advancement of digital new quality productivity tailored to local contexts.
基金supported by the National Social Science Fund of China[Grant No.21BGL181]to Yan Chen.
文摘Coal dependence and inefficient decentralized heating have significantly increased China’s energy consumption for winter heating,increasing air pollution and exacerbating the greenhouse effect.In 2017,China implemented the Pilot Policy on Clean Winter Heating in Northern China,aiming to achieve high central heating coverage and cleaner energy consumption.Studying the effects of this policy can help promote its implementation and serve as a reference for effective adjustment of the contents in the future.However,few studies have investigated this policy and its carbon reduction effects,and most focus on the provincial or city levels.Therefore,this paper considers the policy’s influence on air pollution and carbon emissions at the county level to provide a precise and comprehensive assessment of the policy effects.We use panel data from 1290 counties in 15 provinces in Northern China from 2014 to 2021,applying a multiperiod difference-in-differences model to quantify the impact of the policy on carbon emissions and air quality in the pilot area.We then conduct a series of tests to demonstrate the robustness of the results and analyze the mechanisms of the policy effects from two perspectives,namely,central heating and natural gas use,through a mediating effect model.Finally,we examine the heterogeneity of policy effects between counties based on geographic location and per capita income levels of rural residents through a moderating effect model.The results reveal that the policy significantly reduces air pollution and carbon emissions in the pilot area by increasing the central heating area and natural gas use.Compared with the central and western regions in the north and areas with low-income rural residents,the policy effects in the eastern regions in the north and areas with high-income rural residents are more pronounced.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金funded by the General Program of the National Natural Science Foundation of China [Grant No.72473059]the Ministry of Education Humanities and Social Science Planning Fund Project [Grant No.23YJA790026]+1 种基金the Yunnan Province Basic Research Program General Project [Grant No.202401AT070393]the Innovation and Development Research Think Tank for Resource based Industries at Kunming University of Technology [Grant No.XXZK20-23006].
文摘At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensive green transformation of economic and social development.This study,based on urban panel data from 281 prefecture-level cities in China' Mainland from 2010 to 2020,developed a DI indicator system for these cities and employed a double machine learning algorithm for the first time to investigate the intrinsic mechanisms and incentivizing effects of DI on SPCR.The results showed that:①DI significantly promotes SPCR.②Mechanism tests demonstrated that DI can indirectly enhance SPCR by optimizing resource allocation and reinforcing government interventions.③Further analysis showed that the impact of DI on SPCR was more substantial in regions with lower levels of economic and environmental competition.Moreover,the SPCR driven by DI exhibited heterogeneity,characterized by stronger effects in“resource-based cities>non resource-based cities”and“non-capital economic zones>capital economic zones”.The conclusions of this study hold significant implications for fully harnessing the synergy between digitization and intelligence to empower SPCR.In addition,the findings are valuable for the government’s integrated promotion of the“dual carbon”goal and the“digital China”strategy.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.
文摘As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.
基金Sponsored by National Key Technology Research and Development Program in 12th Five-year Plan of China(2013BAE07B00)
文摘Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tremendous potential in carbon reduction. Considering the consistently increasing demand of iron and steel, to obtain significant carbon reduction by reducing the steel production is not practical, thus the development and implementa- tion of carbon reduction programs and technologies is important for the steel industry. Despite the significant poten- tial of carbon reduction in the steel industry, ironmaking and steelmaking processes are complex. Therefore, resear- ches and developments for the carbon reduction must focus on key processes. Here, key processes and technologies adopted in ULCOS program in EU, COURSE 50 program in Japan, POSCO program in South Korea, AISI pro- grams in US and other carbon reduction programs are summarized and evaluated, and feasible suggestions for carbon reduction in developing countries are presented. If effective measures can be referred to and taken in developing coun- tries, global carbon emission can be greatly reduced.
文摘The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.
基金financially supported by the Natural Science Foundation of Science and Technology Agency of Shanxi Province, China (No. 2011011013-2)
文摘This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of the methods are of simple process, none lead-in pollution agent, low cost and adaptation to large-lot production. The stability of the magnetic powders is improved through modifying the Fe_3O_4 with SiO_2 in solation method.The results of the characterizations show that the superparamagnetic SiO_2-Fe_3O_4sub-microparticles(~600 nm)with saturation intensity of 36.4 m A·m^2·g^(-1)are obtained successfully. Moreover, the quantitating, repeatability and high stability of the carbon reduction method are demonstrated as well.
基金Project supported by the Twelfth Five-Year-Plan on Energy Conservation in Shanghai Colleges and Universitiesthe Shanghai Low-Carbon City Development Project
文摘Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.
文摘This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043)。
文摘Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.
文摘In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.
基金supported by Hainan Provincial Natural Science Foundation of China(No.721RC525).
文摘Guangdong’s carbon emissions have surpassed the world’s 11th largest emitter.It is indispensable for this province to find a robust cost-effective strategy for reducing carbon emissions.This study employed the Low Emissions Analysis Platform model,marginal cost curves,and Monte Carlo methods to simulate the energy consumption,carbon emissions,and economic benefits of emission reduction in Guangdong Province from 2020 to 2030 under the application of various structural optimization policies and energy-saving technologies.The main findings are as follows:In 2030,Guangdong Province is projected to achieve a carbon emission reduction of 273.6 to 304.6million t CO_(2eq),with a total reduction cost ranging from 1030.9 to 1452.2 billion yuan.Increasing the share of renewable energy,which still has significant growth potential,can lead to a 1.4 times greater reduction in carbon emissions compared to the application of energy-saving technologies,despite the latter yielding 2.3 times more energy savings.The emission reduction measures with net-cost can contribute 71.4%to the total carbon reduction of the province,being much larger than those with net benefits.The power sector plays a critical role in carbon emission reduction within Guangdong Province,with its various measures exerting the most substantial impact on emission reduction quantity and cost,contributing cumulative variance contributions of 90.1%and 84.3%,respectively.It has relatively large potential for emission reduction and relatively low cost of structural adjustment.
文摘Urban green-blue infrastructures(GBls)are increasingly gaining attention in the pursuit of carbon neutrality,particularly within residential areas.With this background,this study established an integrated quantitative framework to assess both direct and indirect carbon reduction benefits of urban GBls,by leveraging Life Cycle Assessment approach to precisely calibrate the carbon sequestration benefits of three typical urban GBls(green roofs,sunken green spaces,and rain gardens)under three different scenarios and building a carbon sequestration database that includes 36 local plant species in Shanghai.The research results indicate that GBls have a reducing effect on carbon emissions in urban residential areas.If extrapolating the simulation results to the city scale,the preliminary estimation suggests that the construction of GBls within residential areas in Shanghai can achieve a carbon sink of approximately 540.54 million tCOzeq per year.This level of carbon sequestration is equivalent to 32%of Shanghai's annual carbon emissions.It is evident that the construction of GBls possesses significant potential in carbon reduction benefits and for achieving urban carbon neutrality strategies.
基金supported by the Scientific&Technical Project of the State Grid(5700--202490228A--1--1-ZN).
文摘The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.
基金Financial support from the Natural Science Foundation(NSF) of China(Nos.22205015,22175020,and 22235001)the National Postdoctoral Program for Innovative Talents(No.BX20220032)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2022BG013)the Fundamental Research Funds for the Central Universities(Nos.00007709 and 00007770)。
文摘Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on the dimensionality and function correlations of COF materials.In the present work,one new two-dimensional phthalocyanine COF,namely 2D-NiPc-COF,and one new three-dimensional phthalocyanine COF,namely 3D-NiPc-COF,were fabricated according to the imide reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(Ⅱ) with [2,2-bipyridine]-5,5-diamine and tetrakis(4-aminophenyl) methane,respectively.The crystalline structures of both COFs are verified by the powder X-ray diffraction analysis,computational simulation,and high resolution transmission electron microscopy measurement.Notably,3D-NiPc-COF with dispersed conjugated modules has high utilization efficiency of NiPc electroactive sites of 26.8%,almost two times higher than the in-plane stacking2D-NiPc-COF measured by electrochemical measurement,in turn resulting in its superior electrocatalytic performance with high CO_(2)-to-CO Faradaic efficiency over 90% in a wide potential window,a large partial CO current density of-13.97 mA/cm^(2) at-0.9 V(vs.reversible hydrogen electrode) to 2D-NiPc-COF.Moreover,3D-NiPc-COF has higher turnover number and turnover frequency of 5741.6 and 0.18 s^(-1) at-0.8 V during 8 h lasting measurement.The present work provides an example for the investigation on the correlation between dimensionality and electrochemical properties of 2D and 3D phthalocyanine COFs.
基金National Natural Science Foundation of China(No.22005154)for financial support。
文摘Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.
基金supported by the Young Scientist Funding(22409158,D.R.)from the National Natural Science Foundation of China。
文摘The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,electrocatalytic CO_(2)reduction in acidic electrolytes has garnered significant attention for its potential in sustainable carbon utilization and renewable energy storage.This review provides a summary of recent advancements in acidic CO_(2)reduction,with a focus on catalyst design strategies,the optimization of the local reaction environment,and the effect of cations.We first evaluated the performance and discussed the challenges for acidic CO_(2)reduction in H-type cells,flow cells,and membrane electrode assembly.Afterward,we highlight the innovative strategies for promoting CO_(2)reduction through optimizing the intrinsic activity and regulating the local environment of catalysts.The critical role of cations in enhancing CO_(2)reduction selectivity is also discussed.The review concludes with an outlook on future research directions,especially the need for the design of catalysts and systems that are stable,scalable,and highly efficient.