期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam 被引量:2
1
作者 Sohye Lee Jongyeol Lee +4 位作者 Seongjun Kim Yujin Roh Kamariah Abu Salim Woo-Kyun Lee Yowhan Son 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期199-203,共5页
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimatio... Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha-1,43.6–63.6 m2ha-1and 6,675–8400 tree ha-1,respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha-1a-1,and 7.2 g a-1,respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species. 展开更多
关键词 carbon dynamics Growth rate Litter flux Lowland mixed dipterocarp forest SLOPE
在线阅读 下载PDF
Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction
2
作者 Huaihu Wang Wen Chen +5 位作者 Jin Yang Rui Su Jiale Li Liao Yuan Zhaobin Du Yujie Meng 《Energy Engineering》 2025年第9期3867-3890,共24页
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ... Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems. 展开更多
关键词 carbon-aware demand response bi-level collaborative optimization dynamic carbon emission factor industrial flexible loads
在线阅读 下载PDF
Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition 被引量:6
3
作者 邓小文 刘颖 韩士杰 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期111-116,I0001,I0002,共8页
The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh lit... The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter. 展开更多
关键词 carbon and nitrogen dynamics DECOMPOSITION forest litter nitrogen addition
在线阅读 下载PDF
Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change
4
作者 HAN Qifei XU Wei LI Chaofan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1118-1129,共12页
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr... Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally. 展开更多
关键词 carbon dynamics climate change grassland ecosystems nitrogen deposition water stress index
在线阅读 下载PDF
Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition 被引量:1
5
作者 DENG Xiao-wen1, 3, LIU Ying2, HAN Shi-jie 3 1 Tianjin Academy of Environmental Sciences, Tianjin 300191, P.R.China 2 College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, P.R.China 3 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R.China 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第A2期111-116,共6页
The effects of nitrogen(N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment.Fresh litter ... The effects of nitrogen(N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment.Fresh litter samples including needle litter(Pinus koraiensis) and two types of broadleaf litters(Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain(China).Different doses of N(equal to 0, 30 and 50 kg·ha-1yr-1, respectively, as NH4NO3) were added to litter during the experiment period.The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability.The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter.The dissolved organic Carbon(DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments.Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N(DON) concentrations in litter leachate.About 52?78% of added N was retained in the litter.The percentage of N retention was positively correlated(R2=0.91, p<0.05) with the litter mass loss.This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter. 展开更多
关键词 carbon and nitrogen dynamics DECOMPOSITION forest litter nitrogen addition
在线阅读 下载PDF
Impact of soil viruses on C emissions can be enhanced by viral shuttle processes in soil
6
作者 Di TONG Caixian TANG Jianming XU 《Pedosphere》 2025年第4期617-626,共10页
Soil viruses can greatly influence both microbial catabolism and anabolism.Understanding such influences is crucial for unraveling the fate of soil organic carbon(C).However,previous studies on soil viruses have prima... Soil viruses can greatly influence both microbial catabolism and anabolism.Understanding such influences is crucial for unraveling the fate of soil organic carbon(C).However,previous studies on soil viruses have primarily focused on their role in soil C loss,overlooking their role in C sequestration.In this study,soil viruses and microbes were introduced into sterilized samples of crop and forest soils from typical red and brown soil regions of China to examine the effects of soil viruses on C dynamics,from the perspective of C release and retention.The results showed that the viral effects on soil C emissions varied between soil types.However,they significantly enhanced the accumulation of recalcitrant dissolved and metal-bound organic C,which in turn reinforced the viral effects on C emissions.Furthermore,the accumulation of dissolved and metal-bound organic C was always associated with the microbial utilization of dissolved organic nitrogen(N),highlighting the coupled C and N cycling during the viral shuttle process.Our research demonstrates for the first time the virus-mediated coupling of C and N cycling in soils and the dual role of viruses in soil C release and stabilization,providing a new understanding of virus-driven soil C cycling. 展开更多
关键词 carbon dynamics carbon release carbon retention carbon sequestration coupled carbon and nitrogen cycling metal-bound organic carbon mineral carbon pump recalcitrant dissolved organic carbon
原文传递
Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests 被引量:2
7
作者 Zhiyong Qi Shiming Li +3 位作者 Yong Pang Guang Zheng Dan Kong Zengyuan Li 《Forest Ecosystems》 SCIE CSCD 2023年第5期547-560,共14页
Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change m... Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks. 展开更多
关键词 Aboveground carbon density Bi-temporal ALS carbon dynamics Temporal transferability Gini coefficient
在线阅读 下载PDF
Multi-scale processes influencing global carbon storage and land-carbon-climate nexus:A critical review 被引量:2
8
作者 Owais Ali WANI Shamal Shasang KUMAR +6 位作者 Nazir HUSSAIN Anas Ibni Ali WANI Subhash BABU Parvej ALAM Megna RASHID Simona Mariana POPESCU Sheikh MANSOOR 《Pedosphere》 SCIE CAS CSCD 2023年第2期250-267,共18页
Carbon(C)is a key constitutive element in living organisms(plants,microbes,animals,and humans).Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth,development,nutrient cyclin... Carbon(C)is a key constitutive element in living organisms(plants,microbes,animals,and humans).Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth,development,nutrient cycling,soil fertility,and other agricultural features.The presence of C enhances soil physical,chemical,and biological properties.The C cycle supports all life on the Earth by transferring C between living organisms and the environment.The global climate is changing,and this change is attributable to the release of carbon dioxide and other greenhouse gases from human activities.Owing to the global climate change,agriculture is expected to be majorly affected.Agricultural production is directly linked to the climate.The five main global C pools are the oceanic,geologic,pedologic,atmospheric,and biotic pools,with specific reservoirs and inter-pool fluxes.The soil organic matter has various organic C pools(active,slow,and passive pools),containing various C-based fractions and specific liability pools.Climate,geology,land use,and management techniques are some of the variables that affect organic C and its reservoirs.The dynamics of each of these variables must be understood for a thorough knowledge of how they impact the soil C pools and storage capacity under the changing climate conditions.This review provides a comprehensive overview of the various factors that affect soil C pools/fractions and their C sequestration capacity. 展开更多
关键词 carbon dynamics carbon pools carbon sequestration climate change climate-smart agriculture land use management practice soil organic carbon
原文传递
Dynamics of dead wood decay in Swiss forests 被引量:2
9
作者 Oleksandra Hararuk Werner A.Kurz Markus Didion 《Forest Ecosystems》 SCIE CSCD 2020年第3期462-477,共16页
Background: Forests are an important component of the global carbon(C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest ... Background: Forests are an important component of the global carbon(C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest productivity is often inferred from national-scale yield tables or from satellite products, forest C emissions resulting from dead organic matter decay are usually simulated, therefore it is important to ensure the accuracy and reliability of a model used to simulate organic matter decay at an appropriate scale. National Forest Inventories(NFIs) provide a record of carbon pools in ecosystem components, and these measurements are essential for evaluating rates and controls of C dynamics in forest ecosystems. In this study we combine the observations from the Swiss NFIs and machine learning techniques to quantify the decay rates of the standing snags and downed logs and identify the main controls of dead wood decay.Results: We found that wood decay rate was affected by tree species, temperature, and precipitation. Dead wood originating from Fagus sylvatica decayed the fastest, with the residence times ranging from 27 to 54 years at the warmest and coldest Swiss sites, respectively. Hardwoods at wetter sites tended to decompose faster compared to hardwoods at drier sites, with residence times 45–92 and 62–95 years for the wetter and drier sites, respectively.Dead wood originating from softwood species had the longest residence times ranging from 58 to 191 years at wetter sites and from 78 to 286 years at drier sites.Conclusions: This study illustrates how long-term dead wood observations collected and remeasured during several NFI campaigns can be used to estimate dead wood decay parameters, as well as gain understanding about controls of dead wood dynamics. The wood decay parameters quantified in this study can be used in carbon budget models to simulate the decay dynamics of dead wood, however more measurements(e.g. of soil C dynamics at the same plots) are needed to estimate what fraction of dead wood is converted to CO2, and what fraction is incorporated into soil. 展开更多
关键词 carbon residence time carbon dynamics National Forest Inventory
在线阅读 下载PDF
Carbon storage in a wolfberry plantation chronosequence established on a secondary saline land in an arid irrigated area of Gansu Province,China 被引量:1
10
作者 MA Quanlin WANG Yaolin +2 位作者 LI Yinke SUN Tao Eleanor MILNE 《Journal of Arid Land》 SCIE CSCD 2018年第2期202-216,共15页
Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an impor... Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas. 展开更多
关键词 Lycium barbaum biomass carbon soil organic carbon carbon sequestration potential secondary saline land wolfberry plantation carbon dynamics
在线阅读 下载PDF
Early Snowmelt Enhances the Carbon Sequestration of Hummock-Forming Sphagnum Mosses on Boreal Wetlands 被引量:1
11
作者 Niko Silvan Kari Jokinen 《Open Journal of Ecology》 2016年第3期103-112,共10页
Sphagnum mosses are globally important owing to their considerable peat-forming ability and their potential impact on global climatic cycles acting as a long-term net carbon sink. However, changes in climatic conditio... Sphagnum mosses are globally important owing to their considerable peat-forming ability and their potential impact on global climatic cycles acting as a long-term net carbon sink. However, changes in climatic conditions due to global warming may affect the relations between Sphagnum mosses and vascular plants but also the competition among Sphagnum, and thus alter the accumulation of carbon on boreal wetlands. Sphagnum mosses are a plant genus with a favorable ability to grow in low solar irradiance and temperature conditions compared to vascular plants. This may be increasingly beneficial in increased wintertime temperatures and predated snowmelt conditions. To understand particularly the importance of early spring photosynthetic activity and thus the role of the length of growing season on carbon balance, we analyzed the CO<sub>2</sub> exchange of Sphagnum mosses with closed chamber technique in two categories of microtopographical habitats, hummocks and lawns, during four seasons 2010-2013 on a raised bog in Central Finland. During CO<sub>2</sub> exchange measurements, instantaneous net ecosystem exchange (NEE) and ecosystem respiration (RE) were measured. Our results show that the mean measured seasonal NEE, i.e. the instantaneous net carbon sequestration, of hummocks was generally only slightly higher than the NEE of lawns, but the mean measured seasonal RE of hummocks was clearly and significantly higher than the RE of lawns in every study year. A reason for the observed still higher seasonal carbon sequestration of hummocks than that of lawns besides the slightly higher rate of carbon accumulation was the longer duration of physiologically active growing season. Therefore, hummock-forming Sphagnum mosses exposed firstly from snow cover showed to get the extra time for photosynthesis and thus extra benefit compared to other mire plants. This may be further enhanced by the expansion of hummock-forming Sphagnum moss dominated raised bogs towards northern aapa-mire region due to the global warming. 展开更多
关键词 Sphagnum Mosses Boreal Wetlands Mire Microtopography carbon dynamics Global Warming
在线阅读 下载PDF
Emission Inventories of Carbon-containing Greenhouse Gases in China and Technological Measures for Their Abatement
12
作者 Zhuang Yahui, Zhang Hongxun, Wang Xiaoke & Li Changsheng Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 700085, China Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824 U.S.A. 《Chinese Journal of Population,Resources and Environment》 2004年第3期7-13,共7页
The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for Eco-Environmental Sciences, where the authors work/worked. The first part of the repor... The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for Eco-Environmental Sciences, where the authors work/worked. The first part of the report, which appeared in the preceding issue of this journal, deals with the concept of sustainable carbon cycling, the historic evolution of carbon cycling processes in China, carbon pool enhancement, value addition, carbon sequestration and carbon balance. This very paper, as the second part of the report, covers the results of carbon dynamics modeling, emission inventories of various carbon-containing greenhouse gases and their potential abatement measures. 展开更多
关键词 sustainable development carbon cycle carbon dynamics modeling emission inventory
在线阅读 下载PDF
Breakthrough CO_2 adsorption in bio-based activated carbons 被引量:4
13
作者 Sepideh Shahkarami Ramin Azargohar +1 位作者 Ajay K.Dalai Jafar Soltan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期68-76,共9页
In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, us... In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide(KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25–65°C and inlet CO2 concentration range of10–30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively.Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm3/g and surface area of 1400 m2/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after50 cycles with low temperature(160°C) regeneration. 展开更多
关键词 Biochar Activated carbon Dynamic CO2adsorption Micropore Surface area
原文传递
The decomposition rate of the organic carbon content of suspended particulate matter in the tropical seagrass meadows 被引量:1
14
作者 A'an Johan Wahyudi Karlina Triana +6 位作者 Afdal Afdal Hanif Budi Prayitno Edwards Taufiqurrahman Hanny Meirinawati Rachma Puspitasari Lestari Lestari Suci Lastrini 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第8期44-52,共9页
In terms of downward transport,suspended particulate matter(SPM)from marine or terrigenous sources is an essential contributor to the carbon cycle.Within mesoscale environments such as seagrass ecosystems,SPM flux is ... In terms of downward transport,suspended particulate matter(SPM)from marine or terrigenous sources is an essential contributor to the carbon cycle.Within mesoscale environments such as seagrass ecosystems,SPM flux is an essential part of the total carbon budget that is transported within the ecosystem.By assessing the total SPM transport from water column to sediment,potential carbon burial can be estimated.However,SPM may decompose or reforming aggregate during transport,so estimating the vertical flux without knowing the decomposition rate will lead to over-or underestimation of the total carbon budget.Here this paper presents the potential decomposition rate of the SPM in seagrass ecosystems in an attempt to elucidate the carbon dynamics of SPM.SPM was collected from the seagrass ecosystems located at Sikka and Sorong in Indonesia.In situ experiments using SPM traps were conducted to assess the vertical downward flux and decomposition rate of SPM.The isotopic profile of SPM was measured together with organic carbon and total nitrogen content.The results show that SPM was transported to the bottom of the seagrass ecosystem at a rate of up to(129.45±53.79)mg/(m^(2)·h)(according to carbon).Considering the whole period of inundation of seagrass meadows,SPM downward flux reached a maximum of 3096 mg/(m^(2)·d)(according to carbon).The decomposition rate was estimated at from 5.9μg/(mg·d)(according to carbon)to 26.6μg/(mg·d)(according to carbon).Considering the total downward flux of SPM in the study site,the maximum decomposed SPM was estimated 39.9 mg/(m^(2)·d)(according to carbon)and 82.6 mg/(m^(2)·d)(according to carbon)for study site at Sorong and Sikka,respectively.The decomposed SPM can be 0.6%–2.7%of the total SPM flux,indicating that it is a small proportion of the total flux.The seagrass ecosystems of Sorong and Sikka SPM show an autochthonous tendency with the primary composition of marine-end materials. 展开更多
关键词 carbon dynamic BIOGEOCHEMISTRY coastal ecosystem particulate matter
在线阅读 下载PDF
Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate 被引量:9
15
作者 Zhixian Huang Yixiong Lin +2 位作者 Xiaoda Wang Changshen Ye Ling Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1079-1090,共12页
Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate... Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate through transesterification with propylene carbonate and methanol has been developed by Huang et al.In this work,the optimization of this process was performed by minimizing the total TAC.The results show that the optimal design flowsheet can save energy consumption by 18.6% with the propylene carbonate conversion of 99.9%.Then,an effective plant-wide control structure for the process was developed.Dynamic simulation results demonstrate that the temperature/flow rate cascade control plus with simple temperature control can keep not only product purity but also the conversion of the reactant at their desired values in the face of the disturbance in reactant feed flow rate and feed composition. 展开更多
关键词 Dimethyl carbonate Reactive distillation Transesterification Dynamic simulation
在线阅读 下载PDF
Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China 被引量:11
16
作者 苏文松 刘艳艳 +3 位作者 王少剑 赵亚博 苏咏娴 李世杰 《Journal of Geographical Sciences》 SCIE CSCD 2018年第4期495-513,共19页
Data show that carbon emissions are increasing due to human energy consumption associated with economic development. As a result, a great deal of attention has been focused on efforts to reduce this growth in carbon e... Data show that carbon emissions are increasing due to human energy consumption associated with economic development. As a result, a great deal of attention has been focused on efforts to reduce this growth in carbon emissions as well as to formulate policies to address and mitigate climate change. Although the majority of previous studies have explored the driving forces underlying Chinese carbon emissions, few have been carried out at the city-level because of the limited availability of relevant energy consumption statistics. Here, we utilize spatial autocorrelation, Markov-chain transitional matrices, a dynamic panel model, and system generalized distance estimation(Sys-GMM) to empirically evaluate the key determinants of carbon emissions at the city-level based on Chinese remote sensing data collected between 1992 and 2013. We also use these data to discuss observed spatial spillover effects taking into account spatiotemporal lag and a range of different geographical and economic weighting matrices. The results of this study suggest that regional discrepancies in city-level carbon emissions have decreased over time, which are consistent with a marked spatial spillover effect, and a ‘club' agglomeration of high-emissions. The evolution of these patterns also shows obvious path dependence, while the results of panel data analysis reveal the presence of a significant U-shaped relationship between carbon emissions and per capita GDP. Data also show that per capita carbon emissions have increased in concert with economic growth in most cities, and that a high-proportion of secondary industry and extensive investment growth have also exerted significant positive effects on city-level carbon emissions across China. In contrast, rapid population agglomeration, improvements in technology, increasing trade openness, and the accessibility and density of roads have all played a role in inhibiting carbon emissions. Thus, in order to reduce emissions, the Chinese government should legislate to inhibit the effects of factors that promote the release of carbon while at the same time acting to encourage those that mitigate this process. On the basis of the analysis presented in this study, we argue that optimizing industrial structures, streamlining extensive investment, increasing the level of technology, and improving road accessibility are all effective approaches to increase energy savings and reduce carbon emissions across China. 展开更多
关键词 carbon emissions spatial spillover effects dynamic spatial panel data model Chinese carbon emission reduction policies environmental Kuznets curve
原文传递
The integration of nitrogen dynamics into a land surface model. Part 1: model description and site-scale validation 被引量:2
17
作者 YANG Xiujing DAN Li +5 位作者 YANG Fuqiang PENG Jing LI Yueyue GAO Dongdong JI Jinjun HUANG Mei 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第1期50-57,共8页
Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models f... Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%. 展开更多
关键词 Coupled carbon and nitrogen dynamics nitrogen limitation land surface model carbon–nitrogen–water cycles
在线阅读 下载PDF
Characterizations of Dynamic Strain-induced Transformation in Low Carbon Steel 被引量:2
18
作者 Luhan Hao Mingyue Sun +1 位作者 Namin Xiao Dianzhong Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1095-1101,共7页
Dynamic strain-induced transformation of the low carbon steel Q(235) at 770℃ and 850℃ leads to fine ferrite grains. The microstructure characterization and mechanism of the fine ferrite grain were studied by scann... Dynamic strain-induced transformation of the low carbon steel Q(235) at 770℃ and 850℃ leads to fine ferrite grains. The microstructure characterization and mechanism of the fine ferrite grain were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) technique. The results show that strain-induced microstructure is the mixed microstructure of ferrite and pearlite, with cementite randomly distributed on ferrite grain boundaries and the grains interiors. EBSD images of grain boundaries demonstrate that high angle grain boundaries (HAGBs) are dominant in both of the deformation induced microstructures occurring below and above A(e3) , with only a few low angle grain boundaries (LAGBs) existing in the grain interiors. It implies that the dynamic strain-induced transformation (DSIT) happens above and below A(e3) temperature and has the same phase transition mechanisms. The refinement of ferrite is the cooperative effect of DSIT and continuous dynamic recrystallization (CDRX) of ferrite. Besides, DSIT is deemed as an incomplete carbon diffusion phase transition through the analysis of microstructure and the previous simulated results. The strengths of the Q(235) steel with refined ferrite and pearlite structure get doubled than the initial state without treated by DSIT and the residual stress in the refined structure is partly responsible for the ductility loss. 展开更多
关键词 Dynamic strain-induced transformation Grain refinement Grain boundary misorientation Low carbon steel
原文传递
Effect of Atmospheric CO_2 Enrichment on Soil Respiration in Winter Wheat Growing Seasons of a Rice-Wheat Rotation System 被引量:4
19
作者 SUN Hui-Feng ZHU Jian-Guo +2 位作者 XIE Zu-Bin LIU Gang TANG Hao-Ye 《Pedosphere》 SCIE CAS CSCD 2013年第6期752-766,共15页
Studies on the effect of elevated CO2 on C dynamics in cultivated croplands are critical to a better understanding of the C cycling in response to climate change in agroecosystems. To evaluate the effects of elevated ... Studies on the effect of elevated CO2 on C dynamics in cultivated croplands are critical to a better understanding of the C cycling in response to climate change in agroecosystems. To evaluate the effects of elevated CO2 and different N fertilizer application levels on soil respiration, winter wheat (Triticum aestivum L. cv. Yangmai 14) plants were exposed to either ambient CO2 or elevated CO2 (ambient [CO2] + 200 μmol mol-1), under N fertilizer application levels of 112.5 and 225 kg N ha-1 (as low N and normal N subtreatments, respectively), for two growing seasons (2006-2007 and 2007-2008) in a rice-winter wheat rotation system typical in China. A split-plot design was adopted. A root exclusion method was used to partition soil respiration (RS) into heterotrophic respiration (RH) and autotrophic respiration (RA). Atmospheric CO2 enrichment increased seasonal cumulative RS by 11.8% at low N and 5.6% at normal N when averaged over two growing seasons. Elevated CO2 significantly enhanced (P 〈 0.05) RS (12.7%), mainly due to the increase in RH (caused by decomposition of larger amounts of rice residue under elevated CO2) during a relative dry season in 2007-2008. Higher N supply also enhanced RS under ambient and elevated CO2. In the 2007-2008 season, normal N treatment had a significant positive effect (P 〈 0.01) on seasonal cumulative RS relative to low N treatment when averaged across CO2 levels (16.3%). A significant increase in RA was mainly responsible for the enhanced RS under higher N supply. The correlation (r2) between RH and soil temperature was stronger (P 〈 0.001) than that between RS and soil temperature when averaged across all treatments in both seasons. Seasonal patterns of RA may be more closely related to the plant phenology than soil temperature. The Q10 (the multiplier to the respiration rate for a 10 ℃ increase in soil temperature) values of RS and RH were not affected by elevated CO2 or higher N supply. These results mainly suggested that the increase in RS at elevated CO2 depended on the input of rice residue, and the increase in RS at higher N supply was due to stimulated root growth and concomitant increase in RA during the wheat growing portion of a rice-winter wheat rotation system. 展开更多
关键词 autotrophic respiration carbon dynamics heterotrophic respiration N fertilization soil temperature
原文传递
Soil Microbial Activities in Beech Forests Under Natural Incubation Conditions as Affected by Global Warming 被引量:3
20
作者 S.LU Q.WANG +2 位作者 S.KATAHATA M.NARAMOTO H.MIZUNAGA 《Pedosphere》 SCIE CAS CSCD 2014年第6期709-721,共13页
Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial ... Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change. 展开更多
关键词 biotic factors carbon dynamics metabolic quotient microbial biomass soil enzymes soil respiration
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部