期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
Deep carbon cycle from sediments in subduction zones
1
作者 Jinhua Lai Haiying Hu Lidong Dai 《Acta Geochimica》 2025年第5期1101-1119,共19页
Over 90%of Earth’s carbon is stored in the mantle and core.The deep carbon cycle plays a critical role in regulating surface carbon fluxes,global climate,and the habitability of Earth.Carbon mainly residing within th... Over 90%of Earth’s carbon is stored in the mantle and core.The deep carbon cycle plays a critical role in regulating surface carbon fluxes,global climate,and the habitability of Earth.Carbon mainly residing within the sediments,altered oceanic crust,and mantle peridotite as carbonate minerals and organic carbon is transported to the deep Earth via plate subduction.A series of reactions(e.g.,metamorphism,dissolution,and melting)occurring in the subducting slab drive the carbon removal.Some of the car-bon is recycled to the surface via arc volcanism,while the rest is carried into the deeper Earth.More than two-thirds of the global subduction carbon input comes from sedimen-tary carbon,whose fate during subduction directly affects the flux in the global carbon cycle.Over the past two dec-ades,the sedimentary carbon cycle in subduction zones has been extensively studied by experiments and computational approaches.Here,we provide a comprehensive review of the sources,species,decarbonation reactions,carbon cycle trac-ing,and fluxes of sedimentary carbon in subduction zones,and the role of sedimentary carbon subduction in climate evolution and mantle chemistry.Further research is required for our understanding of deep carbon cycle processes and their role in Earth’s climate. 展开更多
关键词 Deep carbon cycle Subducted sedimentary carbon Subduction zone Global climate
在线阅读 下载PDF
Supply of Dissolved Organic Carbon from the Cold Seeps-Hydrothermal System and Its Impact on the Deep-Sea Carbon Cycle:An Overview
2
作者 ZHANG Xianrong SUN Zhilei +3 位作者 WANG Libo ZHANG Xilin ZHAI Bin XU Cuiling 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第6期1469-1480,共12页
Dissolved carbon(dissolved organic carbon and dissolved inorganic carbon)is the major component of the ocean carbon cycle,representing one of the largest carbon pools on Earth.Cold seeps and hydrothermal systems serve... Dissolved carbon(dissolved organic carbon and dissolved inorganic carbon)is the major component of the ocean carbon cycle,representing one of the largest carbon pools on Earth.Cold seeps and hydrothermal systems serve as the two main windows for the material and energy recycling exchange between the lithosphere and outer spheres(biosphere,hydrosphere and atmosphere).However,recent studies have found that the dynamic activities of fluids in these two extreme systems are a crucial source of‘new'carbon in the deep ocean.These carbon sources may become vital contributors to carbon and energy in marine ecosystems,which affect the global deep-sea carbon budget,and the marine ecosystems as well.In this review,we summarize the sources and formation mechanisms of dissolved carbon in the seep fluids from the cold seeps and hydrothermal vents,the contribution of methane oxidation to dissolved carbon,and the characteristics of the carbon isotope composition in the fluid.Furthermore,we analyze and discuss the influence of carbon discharged from seabed on the seawater carbon cycle by comparing and contrasting these two extreme environments.The research may assist in promoting a deeper understanding of the carbon cycle and material interaction in the ocean,particularly further carbon cycle research in the back-arc basin where cold seeps and hydrothermal vents commonly prevail. 展开更多
关键词 dissolved carbon cold seep hydrothermal vent FLUID carbon cycle
在线阅读 下载PDF
SOME FEATURES OF CARBON CYCLES IN KARST SYSTEM AND THE IMPLICATION FOR EPIKARSTIFICATION —An Example of Yaji Karst Experimental Site in Guilin,China 被引量:15
3
作者 Pan Genxing Tao Yuxiang Shun Yuhua Teng Yongzhong Han Fushun College of Resource & Environment Science,Nanjing Agricultural Univ.,Nanjing, 210095 People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第3期48-57,共10页
The carbon pools of biomass,littering,and SOC wre studied with regards to carbon cycles in epikarst zone,taking an example of Yaji Karst Experiemnt Site in Guilin.This study was focused on SOC and its lability,SOC dec... The carbon pools of biomass,littering,and SOC wre studied with regards to carbon cycles in epikarst zone,taking an example of Yaji Karst Experiemnt Site in Guilin.This study was focused on SOC and its lability,SOC decomposition rate,CO 2 regime in the soils. 13 ctracing was used to persua the relation of bicarbonate in karst water to soil carbon.The results indicated sufficient carbon pool in SOC for the driveing CO 2 in the karst system.It was revealed that about 60percent of carbon in epi-karst springs resulted from SOC during spring and summer.Thus,the CO 2,driving the karstification,was not simply due to adsorption of atmospheric CO 2 but due to carbon transfer through the pathway of air-plant-soil-water.The driving force should not be overlooked for the epi-karst formation by soil as an interface of carbon environmental geochemistry. 展开更多
关键词 carbon cycle carbon transfer EPIKARST SOC.
在线阅读 下载PDF
Air–water CO2 flux in an algae bloom year for Lake Hongfeng,Southwest China:implications for the carbon cycle of global inland waters 被引量:8
4
作者 Faxiang Tao 《Acta Geochimica》 EI CAS CSCD 2017年第4期658-666,共9页
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Manmade lakes ... The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Manmade lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO_2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom,CO_2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m^(-2). Later, the partial pressure(pCO_2) of the aqueous CO_2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m^(-2). In the remaining days, the lake again took up CO_2 from the atmosphere with a net flux of 14.804 g·C·m^(-2). As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO_2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO_2 and hence CO_2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes. 展开更多
关键词 CO2 flux Algae bloom carbon cycle Inland waters Lake Hongfeng
在线阅读 下载PDF
Urban carbon footprint and carbon cycle pressure: The case study of Nanjing 被引量:6
5
作者 ZHAO Rongqin HUANG Xianjin +3 位作者 LIU Ying ZHONG Taiyang DING Minglei CHUAI Xiaowei 《Journal of Geographical Sciences》 SCIE CSCD 2014年第1期159-176,共18页
Urban carbon footprint reflects the impact and pressure of human activities on ur- ban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbo... Urban carbon footprint reflects the impact and pressure of human activities on ur- ban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbon footprint intensity and carbon cycle pressure and discussed the influencing factors of carbon footprint through LMDI decomposition model. The main conclusions are as follows: (1) The total carbon emissions of Nanjing increased rapidly since 2000, in which the carbon emission from the use of fossil energy was the largest Meanwhile, carbon sinks of Nanjing presented a declining trend since 2000, which caused the decrease of carbon compensation rate and the increase of urban carbon cycle pressure. (2) The total carbon footprint of Nanjing increased rapidly since 2000, and the carbon deficit was more than ten times of total land areas of Nanjing in 2009, which means Nanjing confronted high carbon cycle pressure. (3) Generally, carbon footprint intensity of Nanjing was on de- crease and the carbon footprint productivity was on increase. This indicated that energy utilization rate and carbon efficiency of Nanjing was improved since 2000, and the policy for energy conservation and emission reduction taken by Nanjing's government received better effects. (4) Economic development, population and industrial structure are promoting factors for the increase of carbon footprint of Nanjing, while the industrial carbon footprint intensity was inhibitory factor. (5) Several countermeasures should be taken to decrease urban carbon footprint and alleviate carbon cycle pressure, such as: improvement of the energy efficiency, industrial structure reconstruction, afforestation and environmental protection and land use control. Generally, transition to low-carbon economy is essential for Chinese cities to realize sustainable development in the future. 展开更多
关键词 carbon footprint carbon cycle pressure LMDI NANJING
原文传递
A model study on carbon cycle and phytoplankton dynamical processes in the Bohai Sea 被引量:2
6
作者 WeiHao ZhaoLiang FengShizuo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第1期47-56,共10页
The carbon cycle of lower trophic level in the Bohai Sea is studied with a three-dimensional biological and physical coupled model. The influences of the processes (including horizontal advection, river nutrient load,... The carbon cycle of lower trophic level in the Bohai Sea is studied with a three-dimensional biological and physical coupled model. The influences of the processes (including horizontal advection, river nutrient load, active transport etc. ) on the phytoplankton biomass and its evolution are estimated. The Bohai Sea is a weak sink of the CO2 in the atmosphere. During the cycle, 13.7% of the gross production of the phytoplankton enter the higher trophic level and 76.8 % of it are consumed by the respiration itself. The nutrient reproduction comes mainly from the internal biogeochemical loop and the rem-ineralization is an important mechanism of the nutrient transfer from organic form to inorganic. Horizontal advection decreases the total biomass and the eutrophication in some sea areas. Change in the nutrient load of a river can only adjust the local system near its estuary. Controlling the input of the nutrient, which limits the alga growth, can be very useful in lessening the phytoplankton biomass. 展开更多
关键词 carbon cycle phytoplankton dynamics the Bohai Sea
在线阅读 下载PDF
The Paleoproterozoic and Neoproterozoic Carbon Cycle Promoted the Evolution of a Habitable Earth 被引量:1
7
作者 LIU Zhicheng ZHANG Lifei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期316-326,共11页
The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open quest... The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth. 展开更多
关键词 carbon cycle great oxidation event modern subduction PALEOPROTEROZOIC NEOPROTEROZOIC
在线阅读 下载PDF
Simulation of terrestrial carbon cycle balance model in Tibet 被引量:1
8
作者 WANG Jianlin,HU Dan,SUN Zibao(Department of Agronomy, Tibetan Agriculture and Animal Husbandry College, Nyingchi 860000, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期316-322,共7页
Based on climate material, the simplified terrestrial carbon cycle balance (TCCB) model was established, which is semi-mechanism and semi-statistics. Through TCCB model, our estimate indicates ... Based on climate material, the simplified terrestrial carbon cycle balance (TCCB) model was established, which is semi-mechanism and semi-statistics. Through TCCB model, our estimate indicates that the southeastern part of the Tibetan Plateau has much higher carbon content, and we have calculated the litter carbon pool, NPP, carbon fluxes and described their spatial characteristics in this region. Based on the TCCB model simulation, NPP in Tibet is 1.73×10 8 tC/a, soil organic input rate is 0.66×10 8 tC/a, litter mineralization rate is 1.07×10 8 tC/a, vegetation litterfall rate is 1.73×10 8 tC/a, the litter carbon pool is 7.26×10 8 tC, and soil decomposition rate is 309.54×10 8 tC/a. The carbon budget was also analyzed based on the estimates of carbon pool and fluxes. The spatial distributions of carbon pools and carbon fluxes in different compartments of terrestrial ecosystem were depicted with map respectively in Tibet. The distribution of NPP, vegetation litterfall rate, litter, litter mineralization rate, soil organic input rate and the soil decomposition rate were abstracted with temperature, precipitation, fractional vegetation and land feature. 展开更多
关键词 Tibetan Plateau terrestrial ecosystem carbon cycle MODEL
在线阅读 下载PDF
Effects of solar radiation modification on the ocean carbon cycle:An earth system modeling study 被引量:1
9
作者 Xiaoyu Jin Long Cao Jingyu Zhang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第3期56-63,共8页
Solar radiation modification(SRM,also termed as geoengineering)has been proposed as a potential option to counteract anthropogenic warming.The underlying idea of SRM is to reduce the amount of sunlight reaching the at... Solar radiation modification(SRM,also termed as geoengineering)has been proposed as a potential option to counteract anthropogenic warming.The underlying idea of SRM is to reduce the amount of sunlight reaching the atmosphere and surface,thus offsetting some amount of global warming.Here,the authors use an Earth system model to investigate the impact of SRM on the global carbon cycle and ocean biogeochemistry.The authors simulate the temporal evolution of global climate and the carbon cycle from the pre-industrial period to the end of this century under three scenarios:the RCP4.5 CO_(2) emission pathway,the RCP8.5 CO_(2) emission pathway,and the RCP8.5 CO_(2) emission pathway with the implementation of SRM to maintain the global mean surface temperature at the level of RCP4.5.The simulations show that SRM,by altering global climate,also affects the global carbon cycle.Compared to the RCP8.5 simulation without SRM,by the year 2100,SRM reduces atmospheric CO_(2) by 65 ppm mainly as a result of increased CO_(2) uptake by the terrestrial biosphere.However,SRM-induced change in atmospheric CO_(2) and climate has a small effect in mitigating ocean acidification.By the year 2100,relative to RCP8.5,SRM causes a decrease in surface ocean hydrogen ion concentration([H^(+)])by 6% and attenuates the seasonal amplitude of[H^(+)]by about 10%.The simulations also show that SRM has a small effect on globally integrated ocean net primary productivity relative to the high-CO_(2) simulation without SRM.This study contributes to a comprehensive assessment of the effects of SRM on both the physical climate and the global carbon cycle. 展开更多
关键词 Solar radiation modification GEOENGINEERING carbon cycle Ocean acidification Ocean biogeochemistry
在线阅读 下载PDF
Research and Application of Role Theory in Ocean Carbon Cycle Ontology Construction 被引量:1
10
作者 JIA Haipeng XIONG Jing +1 位作者 XU Jianliang WANG Jipeng 《Journal of Ocean University of China》 SCIE CAS 2014年第6期979-984,共6页
Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of car... Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of carbon element in the ocean from the qualitative viewpoint. There are many complex roles in the ocean carbon cycle, and it is hard to represent the case that an entity plays different role in different environment. An ontology technology Hozo role theory developed by Osaka University Mizoguchi Laboratory is proposed as a solution. The basic concepts and representation mode of Hozo role theory is introduced. The conversion process of ocean carbon cycle is abstracted and an ontology model using Hozo role theory is proposed. Instead of comprehensive common ontology construction method, we propose our own ontology development steps. Then an ontology about ocean carbon cycle is built in order to describe and share the basic knowledge of ocean carbon cycle. A knowledge base of material circulation is proposed based on the ontology. Its construction framework is described and some knowledge base query examples are also illustrated. Conclusions show that the role theory can effectively solve the problem of multirole description in ocean carbon cycle, and knowledge reasoning based on ontology is also effective. 展开更多
关键词 ocean carbon cycle ontology role theory Hozo OWL-QL
在线阅读 下载PDF
Effects of elevated pO_3 on carbon cycle between above andbelowground organs of trees
11
作者 LIU Xi-ping Rennenberg Heinz Matyssek Rainer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期932-936,共5页
Translocation of carbohydrate from leaves to roots via phloem and reallocation from roots to leaves via xylem regulate the allocation of carbon (C) between above and belowground organs of trees. To quantitatively an... Translocation of carbohydrate from leaves to roots via phloem and reallocation from roots to leaves via xylem regulate the allocation of carbon (C) between above and belowground organs of trees. To quantitatively analyze effects of elevated ozone concentrations pO3 on the internal cycle of C, juvenile beech and spruce were grown in phytotrons and exposed to ambient and elevated pO3 (i.e. twice-ambient O3 levels, restricted to 〈 150 ppb) for two growing seasons. The translocation of C in the phloem and xylem was quantitatively studied by investigating the phloem/xylem-loading of sugars, the differentiation of stem conductive tissue and the hourly water flow through the stem. Results in the present study shown, elevated pO3 significantly decreased C translocation from shoot to roots in beech by reducing both sugar concentration in the phloem and conductive phloem area. Elevated pO3 also significantly decreased C reallocation from the roots to the shoot in beech by reducing both of sugar concentration in the xylem and transpiration rate. The adverse effects of elevated pO3 on C translocation in the phloem and xylem, however, were small in spruce. Contrasting to beech, spruce is less sensitive to elevated pO3, regarding to phloem differentiation and sugar concentrations in the phloem and xylem. 展开更多
关键词 BEECH carbon cycle elevated pO3 PHLOEM SPRUCE XYLEM
在线阅读 下载PDF
Interannual variability of carbon cycle implied by a 2-D atmospheric transport model
12
作者 LICan XULi ZHANGRen-jian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期779-783,共5页
A 2-dimensional atmospheric transport model is deployed in a simplified CO 2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink i... A 2-dimensional atmospheric transport model is deployed in a simplified CO 2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink in mid-high latitude area of North Hemisphere. Strong interannual variability exists in carbon flux patterns, implying a possible link with ENSO and other natural episodes such as Pinatubo volcano eruption in 1991. Mechanism of this possible link was investigated with statistic method. Correlation analysis indicated that in North Hemisphere, climatic factors such as temperature and precipitation, to some extend, could influence the carbon cycle process of land and ocean, thus cause considerable change in carbon flux distribution. In addition, correlation study also demonstrated the possible important role of Asian terrestrial ecosystems in carbon cycle. 展开更多
关键词 2-D transport model inverse study carbon cycle ENSO interannual variability
在线阅读 下载PDF
Three-step modernization of the ocean:Modeling of carbon cycles and the revolution of ecological systems in the Ediacaran/Cambrian periods
13
作者 Miyuki Tahata Yusuke Sawaki +5 位作者 Yuichiro Ueno Manabu Nishizawa Naohiro Yoshida Toshikazu Ebisuzaki Tsuyoshi Komiya Shigenori Maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期121-136,共16页
Important ecological changes of the Earth (oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent (Rodinia) and the appearance of multi-cellular organis... Important ecological changes of the Earth (oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent (Rodinia) and the appearance of multi-cellular organisms (macroscopic algae and metazoan) took place in the Ediacaran period, priming the Cambrian explosion. The strong perturbations in carbon cycles in the ocean are recorded as excursions in carbonate and organic carbon isotope ratio (δ13Ccarb and δ13Corg) from the Ediacaran through early Cambrian periods. The Ediacaran-early Cambrian sediment records of δ13Ccarb and δ13Corg, obtained from the drill-core samples in Three Gorges in South China, are compared with the results of numerical simulation of a sim- ple one-zone model of the carbon cycle of the ocean, which has two reservoirs (i.e., dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC). The fluxes from the reservoirs are assumed to be proportional to the mass of the carbon reservoirs. We constructed a model, referred to here as the Best Fit Model (BFM), which reproduce δ13Ccarb and δ13Corg records in the Ediacaran-early Cambrian period noted above. BFM reveals that the Shuram excursion is related to three major changes in the carbon cycle or the global ecological system of the Earth: (1) an increase in the coefficient of remineralization by a factor of ca. 100, possibly corresponding to a change in the dominant metabolism from anaerobic respiration to aerobic respiration, (2) an increase of carbon fractionation index from 25‰, to 33‰, possibly corresponding to the change in the primary producer from rock-living cyanobacteria to free-living macro algae, and (3) an in- crease in the coefficient of the organic carbon burial by a factor of ca. 100, possibly corresponding to the onset of a biological pump driven by the flourishing metazoan and zooplankton. The former two changes took place at the start of the Shuram excursion, while the third occurred at the end of the Shuram excursion. The other two excursions are explained by the tentative decrease in primary production due to cold periods, which correspond to the Gaskiers (ca. 580 Ma) and Bikonor (ca. 542 Ma) glaciations. 展开更多
关键词 carbon cycle change carbon isotope ratio Ediacaran to Cambrian Oxygen level Evolution of life
在线阅读 下载PDF
δ^(13)C_(org) perturbations preserved by the interglacial Datangpo Formation in South China with implications for stratigraphic correlation and carbon cycle
14
作者 Xian-yin An Yu-jie Zhang +5 位作者 Li Tian Shi-lei Liu Qi-yu Wang Yong Du Hu-yue Song Jun Hu 《China Geology》 CAS CSCD 2023年第3期420-428,共9页
Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle... Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation. 展开更多
关键词 Organic carbon isotope carbon cycle INTERGLACIAL Palaeoenvironmental reconstruction Cryogenian Period Snowball Earth Neoproterozoic Era Datangpo Formation Geological survey engineering South China Plate
在线阅读 下载PDF
Global Carbon Project (GCP) Beijing Office:a new bridge for understanding regional carbon cycles
15
作者 TAO Bo CAO Mingkui YU Guirui LIU Jiyuan WANG Shaoqiang YAN Huimin 《Journal of Geographical Sciences》 SCIE CSCD 2006年第3期375-377,共3页
It has been widely accepted that human activities, especially burning fossil fuels and land use change, have altered the climate on earth and anthropogenic carbon fluxes have become comparable in magnitude with the na... It has been widely accepted that human activities, especially burning fossil fuels and land use change, have altered the climate on earth and anthropogenic carbon fluxes have become comparable in magnitude with the natural fluxes in the global carbon cycle. The present and potential threat of adverse consequences has focused the attention of the scientists, policy makers and general public on the interaction among carbon cycle, climate change and human system. Asia is a hot spot from environmental change and sustainable development perspectives. The development pathways and environmental changes in the region have obvious consequences for the regional carbon cycle, even for global carbon budget, and the complex, diverse social, economic and environmental conditions make it highly diffficult to understand and quantify these consequences. The GCP Beijing Office "will have a supporting and coordinating role and will provide coordination, leadership and capacity building on carbon cycle sciences in China and to the larger region of Asia" and "liaise with the two International Project Offices based in Canberra and Tsukuba to coordinate a regional and global strategy consistent with the GCP Science and Implementation Framework". 展开更多
关键词 GCP regional office carbon cycle China
在线阅读 下载PDF
Sino-Canadian Project on Carbon Cycle Kicks Off
16
作者 (Guo KY. Zhao B.H.) 《Bulletin of the Chinese Academy of Sciences》 2002年第3期141-141,共1页
  A Sino-Canadian research project titled "Responding to the global warming: Improving China's carbon storage capacity" was officially initiated on August 2.……
关键词 PROJECT Sino-Canadian Project on carbon cycle Kicks Off
在线阅读 下载PDF
Plant diversity modulates hierarchical responses of carbon cycle processes to warming and grazing in an alpine meadow
17
作者 Wangwang Lü Jianping Sun +10 位作者 Bowen Li Yang Zhou Caiyun Luo Zhenhua Zhang Jingya Lü Lanying Chen Yonghui Wang Jin-Sheng He Tsechoe Dorji Jinzhi Ding Shiping Wang 《Journal of Plant Ecology》 2025年第2期299-314,共16页
Isolated individual processes of ecosystem carbon (C) cycles have largely shaped our understanding of C cycle processes under environmental change. Yet, in reality, C cycle processes are inter-related and hierarchical... Isolated individual processes of ecosystem carbon (C) cycles have largely shaped our understanding of C cycle processes under environmental change. Yet, in reality, C cycle processes are inter-related and hierarchical. How these processes respond to warming and grazing has rarely been investigated in a single manipulative experiment. Moreover, biodiversity loss is a major driver of ecosystem change under environmental change, but whether these responses are mechanistically linked to biodiversity remains unclear. Here, we performed a 5-year field manipulative warming with seasonal grazing experiment in an alpine meadow on the Qinghai-Tibetan Plateau. Our results showed that both warming and moderate grazing decreased net ecosystem productivity (NEP) by 42.1% and 38.3%, and their interaction decreased it by 56.2% during the summer grazing period. However, they had no significant effects on NEP during the winter grazing period. Overall, annual gross primary productivity (GPP) and ecosystem respiration (Re) were mainly determined by aboveground rather than belowground processes, and Re variation, which was mainly controlled by aboveground respiration explained 50% of the variation in annual NEP under warming and grazing. Moreover, lower species richness induced by warming and grazing caused smaller NEP with smaller net primary productivity and higher aboveground respiration. The responses of aboveground C cycle processes were greater than that of belowground C cycle processes, suggesting asymmetric above- and belowground responses to warming and grazing. Therefore, our findings suggested that there were higher GPP and Re with lower C sequestration (‘two high with one low patterns’) under warming and moderate grazing. Plant diversity modulated the responses of soil C sequestration to warming and grazing. It is essential to understand the underlying mechanisms of the effects of biodiversity on hierarchical C cycle processes under combined warming and grazing in the future. 展开更多
关键词 hierarchical responses of carbon cycles plant diversity WARMING summer and winter grazing alpine meadow Qinghai-Tibetan Plateau
原文传递
Characteristics and life cycle carbon emission reduction potential of waste recycling after implementing new waste classification policy in China:From case study to national perspective
18
作者 Hao Fu Le Chen +4 位作者 Wei Fang Wenfang Gao Kun Hu Panyue Zhang Guangming Zhang 《Journal of Environmental Sciences》 2025年第9期645-657,共13页
Under the background of resource shortage and global warming,it is of great significance to explore the status,influencing factors and carbon emission reduction effect of waste recycling in China after the implementat... Under the background of resource shortage and global warming,it is of great significance to explore the status,influencing factors and carbon emission reduction effect of waste recycling in China after the implementation of new waste classification policy for guiding waste classification and carbon emission accounting.In this research,the temporal and spatial changes and influencing factors of waste recycling were studied from subdistrict level,life-cycle carbon emission reduction was predicted and policy suggestions for waste recycling were proposed.The results showed that after the implementation of new waste classification policy,the amount of recycled waste and the proportion of low-value recycled waste increased by 420.93 t and 2.29%per month on average,respectively.The district center has the largest amount of recycled waste.Income was the main factors affecting waste recycling,and online shopping and takeout could become important sources of recyclable waste.Accounting cradle-to-grave life cycle carbon footprint,waste plastics takes up the most contribution,accounting for 39.11%,and nearly 391.68 Mt CO_(2eq) would be reduced by waste recycling in China by 2030.Therefore,in the process of waste classification,refining waste classification to increase the amount of low-value recyclables,and rationally deploying collection and transportation vehicles to ensure efficient waste recycling are of great significance to achieve the goal of“carbon peaking and carbon neutrality”. 展开更多
关键词 Waste classification Recyclable waste Life cycle carbon footprint carbon emission reduction Policy suggestions
原文传递
Unraveling the Cenozoic carbon cycle by reconstructing carbonate compensation depth(CCD)
19
作者 Kaixun XIAO Xiumian HU +1 位作者 Jingxin JIANG Jiahao WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第6期1743-1758,共16页
The Carbonate Compensation Depth(CCD)refers to the depth within the ocean where the production and dissolution rates of carbonates reach equilibrium,widely likened to the oceanic calcareous‘snowline’.The reconstruct... The Carbonate Compensation Depth(CCD)refers to the depth within the ocean where the production and dissolution rates of carbonates reach equilibrium,widely likened to the oceanic calcareous‘snowline’.The reconstruction of deep-time CCD has significant implications for understanding ocean circulation,seawater chemical conditions,sediment distribution,and the surface carbon cycle.This paper critically reviews the methods for CCD reconstruction,summarizes the driving mechanisms of the Cenozoic CCD evolution and its association with the carbon cycle,and offers insights into future directions for CCD research.CCD reconstruction has evolved over the past half century from early qualitative to quantitative methods.These methodological improvements have markedly improved the accuracy and resolution of CCD.Existing studies have indicated a general trend of the CCD deepening across major ocean basins since the Cenozoic,interspersed with a minor shallowing phase during the mid-Miocene.The variations in the CCD are primarily influenced by factors such as ocean productivity,weathering,and shelf-basin partitioning.During climate events such as the Paleocene-Eocene Thermal Maximum,the CCD exhibits pulselike fluctuations.Future research should focus on precision and quantification while integrating model simulations to further explore the correlations and response mechanisms between the CCD and the paleoclimate as well as the carbon cycle. 展开更多
关键词 carbonate Compensation Depth CENOZOIC carbon cycle PALEOCLIMATE PALEOCEANOGRAPHY
原文传递
Key processes of carbon cycle and sink enhancement paths in natural wetland ecosystems in China
20
作者 Jinshuai LI Tianxiang HAO +1 位作者 Meng YANG Guirui YU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第8期2444-2459,共16页
Wetland ecosystems have become one of the long-term solutions for mitigating global climate change due to their strong carbon sequestration potential.However,the key carbon cycle processes in wetland ecosystems still ... Wetland ecosystems have become one of the long-term solutions for mitigating global climate change due to their strong carbon sequestration potential.However,the key carbon cycle processes in wetland ecosystems still lack a systematic summary.In the context of wetland protection and restoration,there is still a lack of consensus on the technical pathways to realize carbon sink multiplication in wetland ecosystems.In this paper,the key processes of carbon cycle,such as photosynthetic carbon uptake,microbial carbon decomposition and carbon deposition and burial,are sorted out and summarized in four major wetland types,namely,swamp and peat wetlands,river and riparian wetlands,lake and lakeshore wetlands,and estuarine and coastal wetlands.Based on the key processes of carbon cycle,three technological pathways for carbon sink multiplication are proposed,including,vegetation carbon sequestration and sink enhancement technology,soil carbon emission reduction technology and carbon deposition and burial technology.The key technologies under each pathway are further refined.And the carbon sink effects of the carbon sink technologies in different wetland types are qualitatively described.Also,wetland protection and restoration methods in corresponding regions are given in the light of the regional characteristics of wetlands in China.This will provide a scientific basis for the strategy of doubling the carbon sinks of China′s wetland ecosystems. 展开更多
关键词 WETLANDS carbon cycle carbon sinks Technology pathways Conservation and restoration
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部